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Hourly Load Forecasts: Who Relies on It and Why

Electricity is difficult to store:

⇒ delivered through an interconnected
European grid

� requires constant balance between supply
and demand for stability

� achieved by adjusting supply to
fine-resolution anticipated demand through
domestic power plant production, storage
utilization, and imports or exports

power plant, storage, grid and finan-
cial operators need hourly load fore-
casts

Figure 1: Schematic illustration of the ENTSO-E power grid with
average load (2023) across 24 participating European countries.



Hourly Mid-Term Load Forecasts:
A Research Gap [4, 1] Crucial for Practitioners

Short-term
(several hours to days)

Mid-term
(several weeks to one year)

Long-term
(several years)

bidding, pricing, trading
(intraday, day-ahead auctions)

supply adjustment

pricing & hedging of futures, forwards, PPA

production planning

infrastructure maintenance scheduling

seasonal arbitrage

battery degradation management

optimal storage sizing

investment decision



Probabilistic and Multivariate Hourly Mid-Term Load Forecasts:
Accounting for Cross-Country Uncertainties in Load Characteristics

Characteristic Load Effect Spatial Level Type of Uncertainty
Calendar Daily, weekly, yearly, and holiday

patterns due to calendar-based human
behavior

National Deterministic

Meteorological Temperature, climate conditions,
humidity, wind speed, cloud cover

affecting electric heating, cooling, and
lighting

National-
(Transnational)

Stochastic (multiple
seasonalities)

Socio-Economic &
Political

E.g. Economic growth, population size,
fossil fuel prices, political incentives for

decarbonization impacting mid- to
long-term load levels

(National)-
Transnational

Stochastic
(non-stationary with unit

root)

Autoregressive Remaining short to mid-term load
deviations

National-
(Transnational)

Stochastic

Table 1: Various facets, see [3], explaining load categorized in terms of spatial level and uncertainty type.

cross-country uncertainties in mid-term load ⇒ probabilistic and multivariate forecasting across Europe



Probabilistic and Multivariate Hourly Mid-Term Load Forecasts:
Accounting for Cross-Country Uncertainties in Load Characteristics

Characteristic Load Effect Spatial Level Type of Uncertainty
Calendar Daily, weekly, yearly, and holiday

patterns due to calendar-based human
behavior

National Deterministic

Meteorological Temperature, climate conditions,
humidity, wind speed, cloud cover

affecting electric heating, cooling, and
lighting

National-
(Transnational)

Stochastic (multiple
seasonalities)

Socio-Economic &
Political

E.g. Economic growth, population size,
fossil fuel prices, political incentives for

decarbonization impacting mid- to
long-term load levels

(National)-
Transnational

Stochastic
(non-stationary with unit

root)

Autoregressive Remaining short to mid-term load
deviations

National-
(Transnational)

Stochastic

Table 1: Various facets, see [3], explaining load categorized in terms of spatial level and uncertainty type.

cross-country uncertainties in mid-term load ⇒ probabilistic and multivariate forecasting across Europe



Starting Point: A Country-Specific Point Forecasting Model
Generalized Additive Model (GAM) Specification [2, 5]

Loadt = o + µ(X t)︸ ︷︷ ︸
smooth effects in covariates

+ Et︸︷︷︸
short-term autoregressive effects

, o ∈ R,

Et = ϕ1Et−1 + . . . + ϕpEt−p + ϵAR
t ,

µ(X t) = µCalendar
(
XCalendar
t

)︸ ︷︷ ︸
calendar effects

+µTemp
(
XTemp
t

)︸ ︷︷ ︸
meteorological effects

+µSocEconPol
(
X SocEconPol
t

)︸ ︷︷ ︸
socio-econ. & political effects

▶ Calendar variables XCalendar
t+h are known

▶ Stochastic variables XTemp
t+h , X SocEconPol

t+h , Et+h need to be forecasted

▶ Separately estimated models

⇒ error processes ϵTemp, ϵSocEconPol , ϵAR are treated as independent
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From Country-Specific Point to and Probabilistic Forecasts
Loadt = o + µCalendar(XCalendar

t

)︸ ︷︷ ︸
deterministic

+µTemp(XTemp
t

)︸ ︷︷ ︸
stochastic

+µSocEconPol(X SocEconPol
t

)︸ ︷︷ ︸
stochastic

+ Et︸︷︷︸
stochastic

simulate via
ϵTemp
t+h ∼ N

(
0, Σ̂Temp

) simulate via
ϵSocEconPolt+h ∼ N

(
0, Σ̂SocEconPol

) simulate via
ϵAR
t+h ∼ N

(
0, Σ̂AR

)

combine in GAM

⇒ For each stochastic component, simulate trajectories via the model mean and error

⇒ Capture transnational dependence by sampling multivariate ϵt ∼ N (0, Σ̂)

⇒ Ensemble these trajectories within the country-specific GAMs

⇒ probabilistic load forecasts
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Modelling of XTemp: Smoothing ▶ GAM ▶ AR
Thermal inertia and delayed human reactivity

F
Exponentially smoothed temperatures

X̃ Temp
t = αX Temp

t−1 + α(1− α)X Temp
t−2 + · · ·+ α(1− α)t−2X Temp

1

where α−1 = 6, 24 governs the memory on past temperatures

To capture extreme meteorological events

F
Extend in-sample data for GAM estimation to 20 years,
include monotonous smooth trend for climate change

effects

X̃ i, Temp
t = o i, Temp + µi, Season(X Season

t ) + µi,Trend(XTrend
t ) + εi,Temp

t

εi,Temp
t =

∑
k∈S

ϕkε
i,Temp
t−k + ϵit , for i =1,. . . , n countries

ϵ
i,(m)
t+h ∼ N

(
0, Σ̂

Temp
)
, for hours h and simulation m
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Figure 2: Five-year moving average temperature 1999–2024.
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Modelling of X SocEconPol : Retrieved Endogenously

▶ Hourly mid-term forecasts for external
economic and policy indicators are scarce
⇒ retrieve SocEconPol trend from load data

▶ Temperature, holidays and policy shocks act
on similar time scales
⇒ simple detrending of Loadt would mix
effects (see figure)
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Figure 3: Hourly Load (black) and temperature (red) with their weekly
moving average during first COVID-19 lockdown in France.

Two-stage retrieval:

(1) Remove calendar & weather effects: Loadt = µCalendar (XCalendar
t ) + µTemp(XTemp

t ) + rt

(2) Aggregate residuals: X SocEconPol
τ = weekly aggregate(rt)
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Modelling of X SocEconPol : Cross-Country Patterns

▶ X i,SocEconPol
τ shows geographically coherent clusters of countries

▶ Dynamics align with economic expansion, holidays, COVID-19, and the energy crisis
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Figure 4: Standardized XSocEconPol
τ by cluster for data 2015–2019 (left) and 2019–2023 (right).



Modelling of X SocEconPol : Correlations with External Indicators

Experiment 1 Experiment 50
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Correlation
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Figure 5: Correlations between XSocEconPol
τ and energy prices,

macroeconomic, energy and uncertainty indicators, for Germany 2015–2019
(left) and 2019–2023 (right).

▶ Pre-COVID (left panel):

▶ positive with GDP, production, prices
▶ negative with unemployment and some

uncertainty measures
⇒ endogenous trend reflects economic

expansion

▶ COVID / energy crisis (right panel):

▶ energy prices and several price indices
turn negative

▶ links to uncertainty indicators strengthen
⇒ endogenous trend reflects contraction

and heightened uncertainty



Modelling of X SocEconPol : VAR, VECM, VETS
Incorporated through Vector models recognizing transnational dependence

Model Unit-Root Assumption
Vectorautoregressive (VAR) Model stationarity

Vector Error Correction Model (VECM) one joint underlying unit root (single pan-European socio-economic and political non-stationary trend )

Vector Error-Trend-Seasonal (VETS) Model country-specific unit root with common smoothing parameter (common memory of past observations)
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii︸ ︷︷ ︸

varying assumptions on persistence of socio-economic and political trend in the forecasting horizon
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Figure 6: Fitted and forecasted XSocEconPol-Stat
t for in-sample data 2019–2023.



Results: Forecasting Performance in Terms of CRPS

▶ Design:
▶ forecast horizon H = 24 × 7 × 52
▶ 24 European countries
▶ 50 forecasting experiments in 2015–2024
▶ 4 years of in-sample data per experiment

▶ Key findings:
▶ superior forecasting accuracy compared to

benchmarks
▶ single pan-European socio-economic & political

non-stationary trend



Results: Interpretable GAM with Trajectory Inputs
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Figure 7: Temperature (left) and VETS SocEconPol (right) trajectories (min, median, max) based on the area under the curve in the Christmas holiday time.

⇒ High-demand scenario by combining coldest temperature with most positive SocEconPol
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Figure 7: Temperature (left) and VETS SocEconPol (right) trajectories (min, median, max) based on the area under the curve in the Christmas holiday time.

⇒ High-demand scenario by combining coldest temperature with most positive SocEconPol
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(b) Germany

Figure 8: Difference between the scenario and point forecast (top) and stacked component contributions (bottom) during the Christmas holiday time (15 Dec
2023–14 Jan 2024).
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Figure 9: Daily averaged difference between the scenario and point forecast (top) and stacked component contributions (bottom) in France for the
entire one-year forecasting horizon (Feb 2023–Jan 2024).
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