

Spatial Weather, Socio-Economic and Political Risks in Mid-Term Forecasting of Hourly Electricity Load

Monika Zimmermann¹, Florian Ziel

Chair of Data Science in Energy and Environment
University of Duisburg-Essen Germany

EFC25 - Wrocław, Poland
December 11th, 2025

¹Monika.Zimmermann@uni-due.de

Hourly Load Forecasts: Who Relies on It and Why

Electricity is difficult to store:

- ⇒ delivered through an interconnected European grid
- ❖ requires constant balance between supply and demand for stability
- ⚖️ achieved by adjusting supply to fine-resolution anticipated demand through domestic power plant production, storage utilization, and imports or exports

power plant, storage, grid and financial operators need **hourly** load forecasts

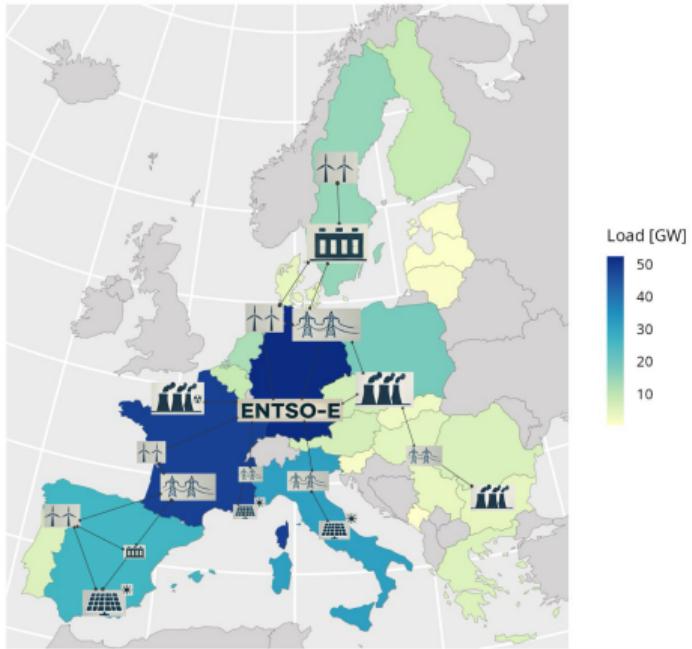
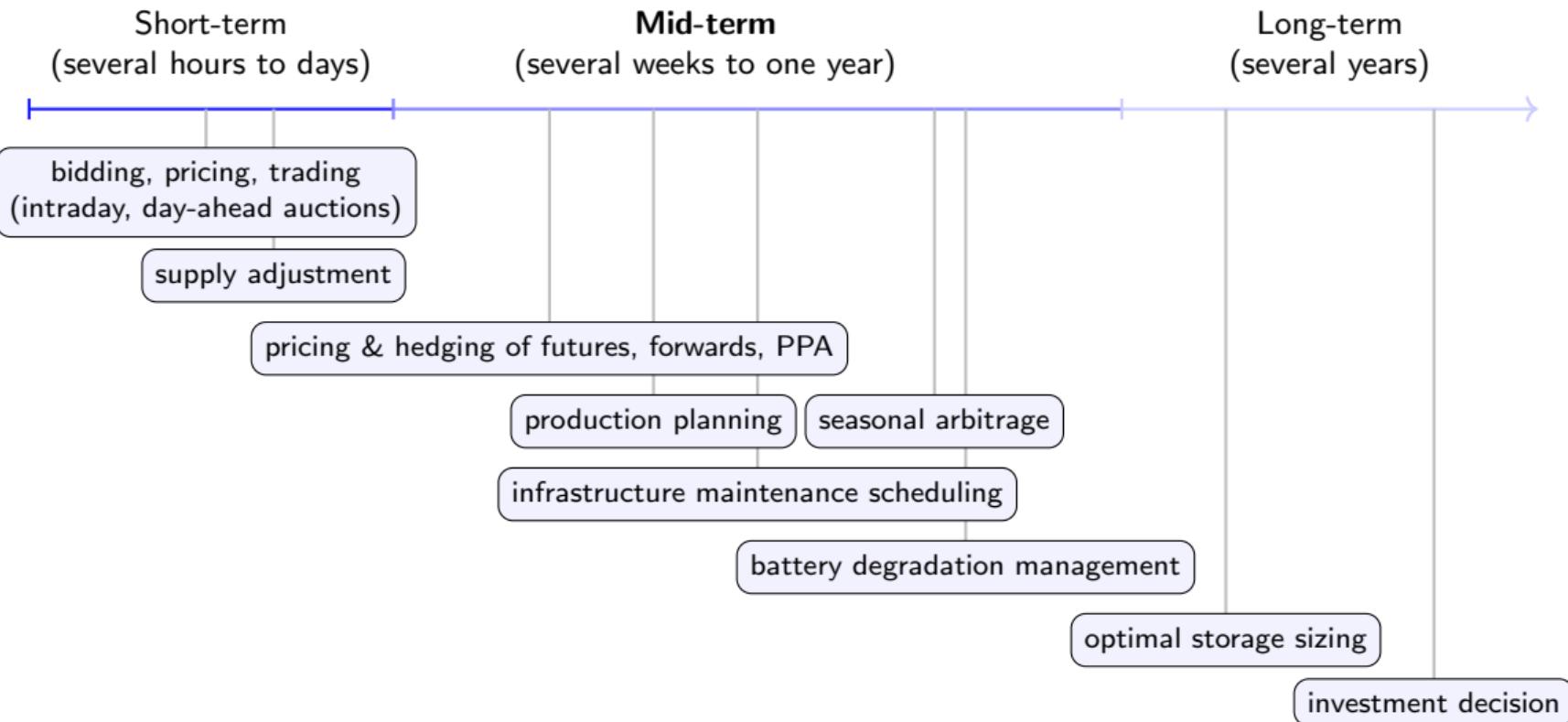


Figure 1: Schematic illustration of the ENTSO-E power grid with average load (2023) across 24 participating European countries.

Hourly Mid-Term Load Forecasts:

A Research Gap [4, 1] Crucial for Practitioners



Probabilistic and Multivariate Hourly Mid-Term Load Forecasts:

Accounting for Cross-Country Uncertainties in Load Characteristics

Characteristic	Load Effect	Spatial Level	Type of Uncertainty
Calendar	Daily, weekly, yearly, and holiday patterns due to calendar-based human behavior	National	Deterministic
Meteorological	<i>Temperature</i> , climate conditions, humidity, wind speed, cloud cover affecting electric heating, cooling, and lighting	National- (Transnational)	Stochastic (multiple seasonalities)
Socio-Economic & Political	E.g. Economic growth, population size, fossil fuel prices, political incentives for decarbonization impacting mid- to long-term load levels	(National)- Transnational	Stochastic (non-stationary with unit root)
Autoregressive	Remaining short to mid-term load deviations	National- (Transnational)	Stochastic

Table 1: Various facets, see [3], explaining load categorized in terms of spatial level and uncertainty type.

Probabilistic and Multivariate Hourly Mid-Term Load Forecasts:

Accounting for Cross-Country Uncertainties in Load Characteristics

Characteristic	Load Effect	Spatial Level	Type of Uncertainty
Calendar	Daily, weekly, yearly, and holiday patterns due to calendar-based human behavior	National	Deterministic
Meteorological	<i>Temperature</i> , climate conditions, humidity, wind speed, cloud cover affecting electric heating, cooling, and lighting	National- (Transnational)	Stochastic (multiple seasonalities)
Socio-Economic & Political	E.g. Economic growth, population size, fossil fuel prices, political incentives for decarbonization impacting mid- to long-term load levels	(National)- Transnational	Stochastic (non-stationary with unit root)
Autoregressive	Remaining short to mid-term load deviations	National- (Transnational)	Stochastic

Table 1: Various facets, see [3], explaining load categorized in terms of spatial level and uncertainty type.

cross-country uncertainties in mid-term load \Rightarrow **probabilistic** and **multivariate** forecasting across Europe

Starting Point: A Country-Specific Point Forecasting Model

Generalized Additive Model (GAM) Specification [2, 5]

$$\text{Load}_t = o + \underbrace{\mu(\mathbf{X}_t)}_{\text{smooth effects in covariates}} + \underbrace{\mathcal{E}_t}_{\text{short-term autoregressive effects}}, \quad o \in \mathbb{R},$$
$$\mathcal{E}_t = \phi_1 \mathcal{E}_{t-1} + \dots + \phi_p \mathcal{E}_{t-p} + \epsilon_t^{\text{AR}},$$

Starting Point: A Country-Specific Point Forecasting Model

Generalized Additive Model (GAM) Specification [2, 5]

$$\text{Load}_t = o + \underbrace{\mu(\mathbf{X}_t)}_{\text{smooth effects in covariates}} + \underbrace{\mathcal{E}_t}_{\text{short-term autoregressive effects}}, \quad o \in \mathbb{R},$$

$$\mathcal{E}_t = \phi_1 \mathcal{E}_{t-1} + \dots + \phi_p \mathcal{E}_{t-p} + \epsilon_t^{\text{AR}},$$

$$\mu(\mathbf{X}_t) = \underbrace{\mu^{\text{Calendar}}(X_t^{\text{Calendar}})}_{\text{calendar effects}} + \underbrace{\mu^{\text{Temp}}(X_t^{\text{Temp}})}_{\text{meteorological effects}} + \underbrace{\mu^{\text{SocEconPol}}(X_t^{\text{SocEconPol}})}_{\text{socio-econ. \& political effects}}$$

Starting Point: A Country-Specific Point Forecasting Model

Generalized Additive Model (GAM) Specification [2, 5]

$$\text{Load}_t = o + \underbrace{\mu(\mathbf{X}_t)}_{\text{smooth effects in covariates}} + \underbrace{\mathcal{E}_t}_{\text{short-term autoregressive effects}}, \quad o \in \mathbb{R},$$

$$\mathcal{E}_t = \phi_1 \mathcal{E}_{t-1} + \dots + \phi_p \mathcal{E}_{t-p} + \epsilon_t^{\text{AR}},$$

$$\mu(\mathbf{X}_t) = \underbrace{\mu^{\text{Calendar}}(X_t^{\text{Calendar}})}_{\text{calendar effects}} + \underbrace{\mu^{\text{Temp}}(X_t^{\text{Temp}})}_{\text{meteorological effects}} + \underbrace{\mu^{\text{SocEconPol}}(X_t^{\text{SocEconPol}})}_{\text{socio-econ. \& political effects}}$$

- ▶ Calendar variables $X_{t+h}^{\text{Calendar}}$ are known

Starting Point: A Country-Specific Point Forecasting Model

Generalized Additive Model (GAM) Specification [2, 5]

$$\text{Load}_t = o + \underbrace{\mu(\mathbf{X}_t)}_{\text{smooth effects in covariates}} + \underbrace{\mathcal{E}_t}_{\text{short-term autoregressive effects}}, \quad o \in \mathbb{R},$$
$$\mathcal{E}_t = \phi_1 \mathcal{E}_{t-1} + \dots + \phi_p \mathcal{E}_{t-p} + \epsilon_t^{\text{AR}},$$

$$\mu(\mathbf{X}_t) = \underbrace{\mu^{\text{Calendar}}(X_t^{\text{Calendar}})}_{\text{calendar effects}} + \underbrace{\mu^{\text{Temp}}(X_t^{\text{Temp}})}_{\text{meteorological effects}} + \underbrace{\mu^{\text{SocEconPol}}(X_t^{\text{SocEconPol}})}_{\text{socio-econ. \& political effects}}$$

- ▶ Calendar variables $X_{t+h}^{\text{Calendar}}$ are known
- ▶ Stochastic variables X_{t+h}^{Temp} , $X_{t+h}^{\text{SocEconPol}}$, \mathcal{E}_{t+h} need to be forecasted

Starting Point: A Country-Specific Point Forecasting Model

Generalized Additive Model (GAM) Specification [2, 5]

$$\text{Load}_t = o + \underbrace{\mu(\mathbf{X}_t)}_{\text{smooth effects in covariates}} + \underbrace{\mathcal{E}_t}_{\text{short-term autoregressive effects}}, \quad o \in \mathbb{R},$$

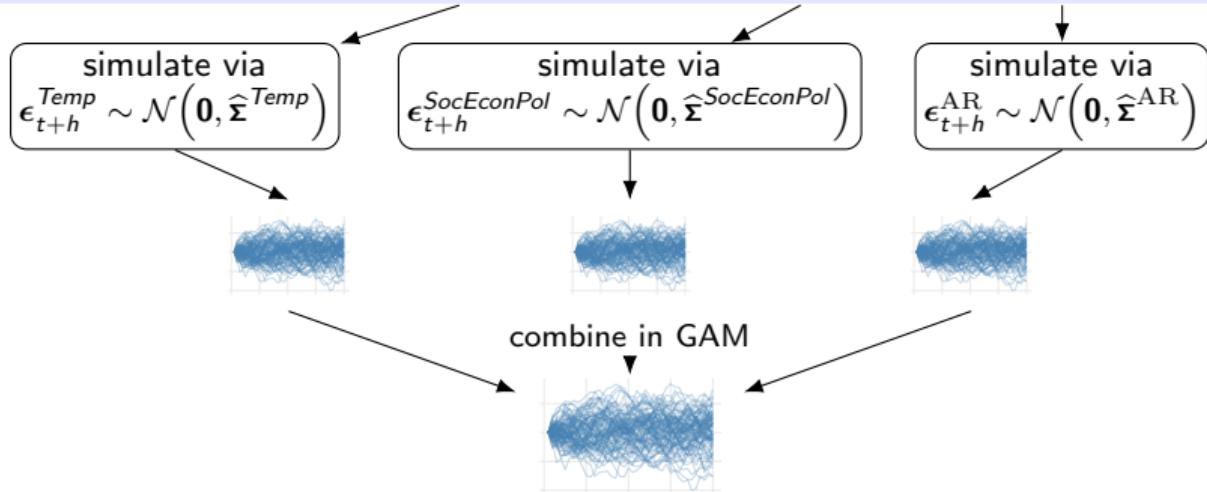
$$\mathcal{E}_t = \phi_1 \mathcal{E}_{t-1} + \dots + \phi_p \mathcal{E}_{t-p} + \epsilon_t^{\text{AR}},$$

$$\mu(\mathbf{X}_t) = \underbrace{\mu^{\text{Calendar}}(X_t^{\text{Calendar}})}_{\text{calendar effects}} + \underbrace{\mu^{\text{Temp}}(X_t^{\text{Temp}})}_{\text{meteorological effects}} + \underbrace{\mu^{\text{SocEconPol}}(X_t^{\text{SocEconPol}})}_{\text{socio-econ. \& political effects}}$$

- ▶ Calendar variables $X_{t+h}^{\text{Calendar}}$ are known
- ▶ Stochastic variables X_{t+h}^{Temp} , $X_{t+h}^{\text{SocEconPol}}$, \mathcal{E}_{t+h} need to be forecasted
- ▶ Separately estimated models
- ⇒ error processes ϵ^{Temp} , $\epsilon^{\text{SocEconPol}}$, ϵ^{AR} are treated as independent

From Country-Specific Point to and Probabilistic Forecasts

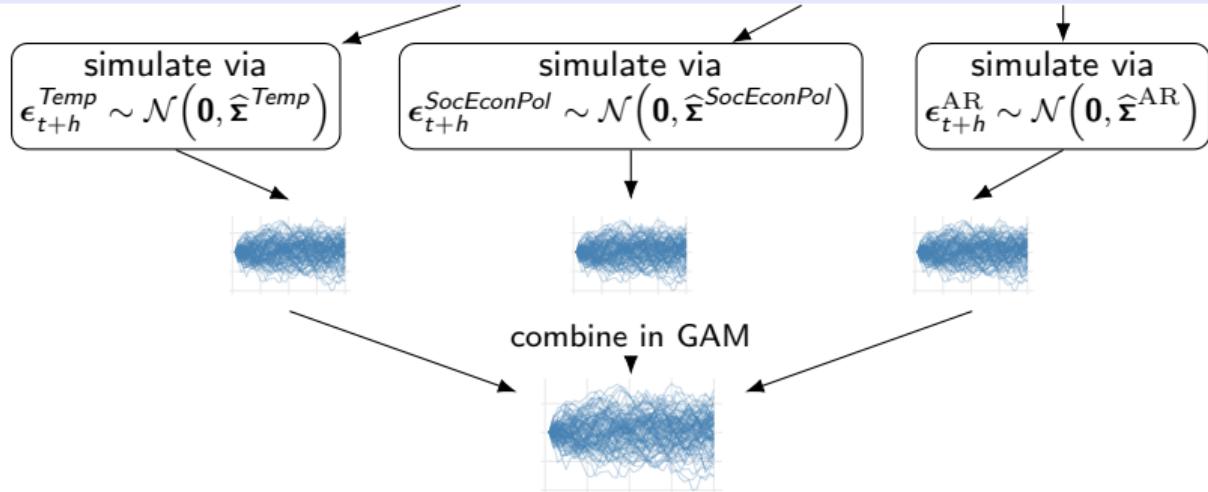
$$\text{Load}_t = o + \underbrace{\mu^{\text{Calendar}}(X_t^{\text{Calendar}})}_{\text{deterministic}} + \underbrace{\mu^{\text{Temp}}(X_t^{\text{Temp}})}_{\text{stochastic}} + \underbrace{\mu^{\text{SocEconPol}}(X_t^{\text{SocEconPol}})}_{\text{stochastic}} + \underbrace{\varepsilon_t}_{\text{stochastic}}$$



⇒ For each stochastic component, simulate trajectories via the model mean and error

From Country-Specific Point to and Probabilistic Forecasts

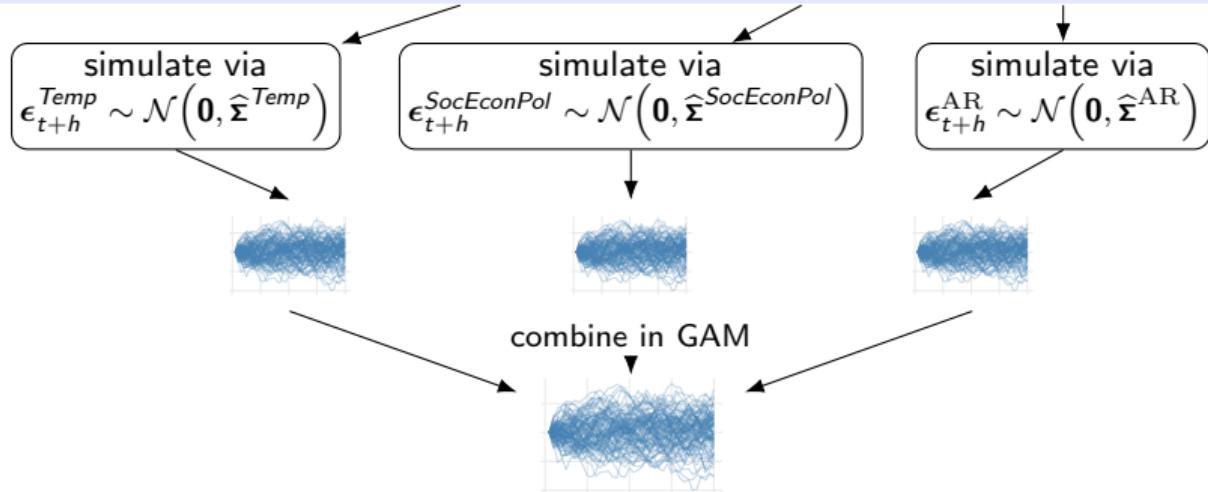
$$\text{Load}_t = o + \underbrace{\mu^{\text{Calendar}}(X_t^{\text{Calendar}})}_{\text{deterministic}} + \underbrace{\mu^{\text{Temp}}(X_t^{\text{Temp}})}_{\text{stochastic}} + \underbrace{\mu^{\text{SocEconPol}}(X_t^{\text{SocEconPol}})}_{\text{stochastic}} + \underbrace{\varepsilon_t}_{\text{stochastic}}$$



- ⇒ For each stochastic component, simulate trajectories via the model mean and error
- ⇒ Capture **transnational dependence** by sampling **multivariate** $\varepsilon_t \sim \mathcal{N}(\mathbf{0}, \hat{\Sigma})$

From Country-Specific Point to and Probabilistic Forecasts

$$\text{Load}_t = o + \underbrace{\mu^{\text{Calendar}}(X_t^{\text{Calendar}})}_{\text{deterministic}} + \underbrace{\mu^{\text{Temp}}(X_t^{\text{Temp}})}_{\text{stochastic}} + \underbrace{\mu^{\text{SocEconPol}}(X_t^{\text{SocEconPol}})}_{\text{stochastic}} + \underbrace{\varepsilon_t}_{\text{stochastic}}$$



- ⇒ For each stochastic component, simulate trajectories via the model mean and error
- ⇒ Capture **transnational dependence** by sampling **multivariate** $\varepsilon_t \sim \mathcal{N}(\mathbf{0}, \hat{\Sigma})$
- ⇒ Ensemble these trajectories within the country-specific GAMs
- ⇒ **probabilistic load forecasts**

Modelling of X^{Temp} : **Smoothing** ▶ **GAM** ▶ **AR**

Thermal inertia and delayed human reactivity

Exponentially smoothed temperatures

$$\tilde{X}_t^{\text{Temp}} = \alpha X_{t-1}^{\text{Temp}} + \alpha(1 - \alpha)X_{t-2}^{\text{Temp}} + \cdots + \alpha(1 - \alpha)^{t-2}X_1^{\text{Temp}}$$

where $\alpha^{-1} = 6, 24$ governs the memory on past temperatures

Modelling of X^{Temp} : **Smoothing** ► **GAM** ► **AR**

Thermal inertia and delayed human reactivity

△

Exponentially smoothed temperatures

$$\tilde{X}_t^{\text{Temp}} = \alpha X_{t-1}^{\text{Temp}} + \alpha(1-\alpha)X_{t-2}^{\text{Temp}} + \dots + \alpha(1-\alpha)^{t-2}X_1^{\text{Temp}}$$

where $\alpha^{-1} = 6,24$ governs the memory on past temperatures

To capture **extreme meteorological events**

△

Extend in-sample data for **GAM** estimation to **20 years**,
include monotonous smooth trend for **climate change
effects**

$$\tilde{X}_t^{\text{i, Temp}} = \sigma^{\text{i, Temp}} + \mu^{\text{i, Season}}(X_t^{\text{Season}}) + \mu^{\text{i, Trend}}(X_t^{\text{Trend}}) + \varepsilon_t^{\text{i, Temp}}$$

$$\varepsilon_t^{i, \text{Temp}} = \sum_{k \in S} \phi_k \varepsilon_{t-k}^{i, \text{Temp}} + \epsilon_t^i, \quad \text{for } i = 1, \dots, n \text{ countries}$$

$$\epsilon_{t+h}^{i,(m)} \sim \mathcal{N}\left(\mathbf{0}, \widehat{\boldsymbol{\Sigma}}^{Temp}\right), \text{ for hours } h \text{ and simulation } m$$

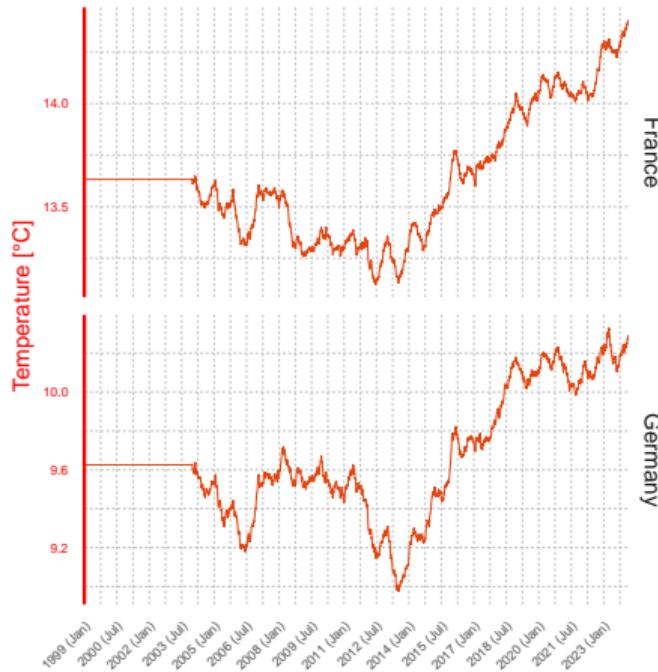


Figure 2: Five-year moving average temperature 1999–2024.

Modelling of $X^{SocEconPol}$: Retrieved Endogenously

- ▶ **Hourly mid-term forecasts** for **external** economic and policy indicators are **scarce**
⇒ retrieve *SocEconPol* **trend from load data**

Modelling of $X^{SocEconPol}$: Retrieved Endogenously

- ▶ **Hourly mid-term forecasts** for external economic and policy indicators are **scarce**
⇒ retrieve *SocEconPol* **trend from load data**
- ▶ Temperature, holidays and policy shocks act on **similar time scales**
⇒ **simple detrending** of $Load_t$ would **mix effects** (see figure)

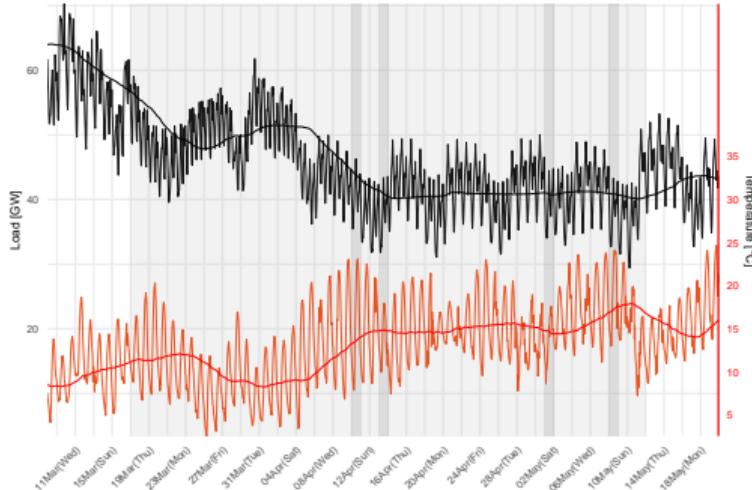


Figure 3: Hourly Load (black) and temperature (red) with their weekly moving average during first COVID-19 lockdown in France.

Modelling of $X^{SocEconPol}$: Retrieved Endogenously

- ▶ **Hourly mid-term forecasts** for external economic and policy indicators are **scarce**
⇒ retrieve *SocEconPol* **trend from load data**
- ▶ Temperature, holidays and policy shocks act on **similar time scales**
⇒ **simple detrending** of $Load_t$ would **mix effects** (see figure)

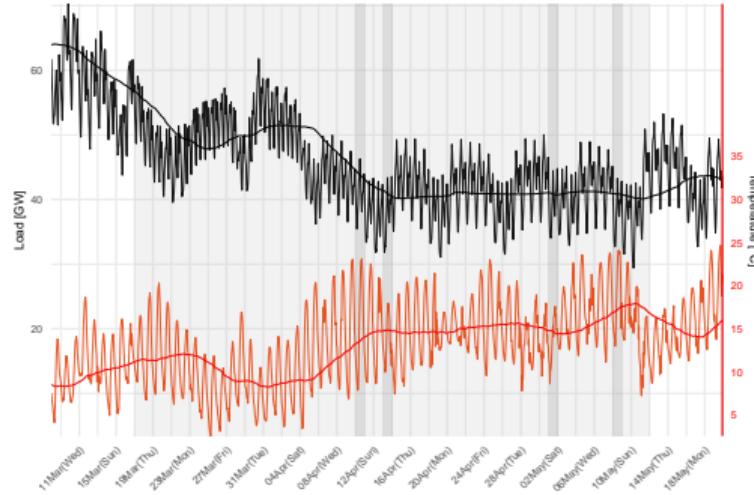


Figure 3: Hourly Load (black) and temperature (red) with their weekly moving average during first COVID-19 lockdown in France.

Two-stage retrieval:

- (1) Remove calendar & weather effects: $Load_t = \mu^{Calendar}(X_t^{Calendar}) + \mu^{Temp}(X_t^{Temp}) + r_t$
- (2) **Aggregate residuals:** $X_{\tau}^{SocEconPol} = \text{weekly aggregate}(r_t)$

Modelling of $X_T^{SocEconPol}$: Cross-Country Patterns

- ▶ $X_T^{i, SocEconPol}$ shows **geographically coherent clusters** of countries
- ▶ Dynamics align with **economic expansion, holidays, COVID-19, and the energy crisis**

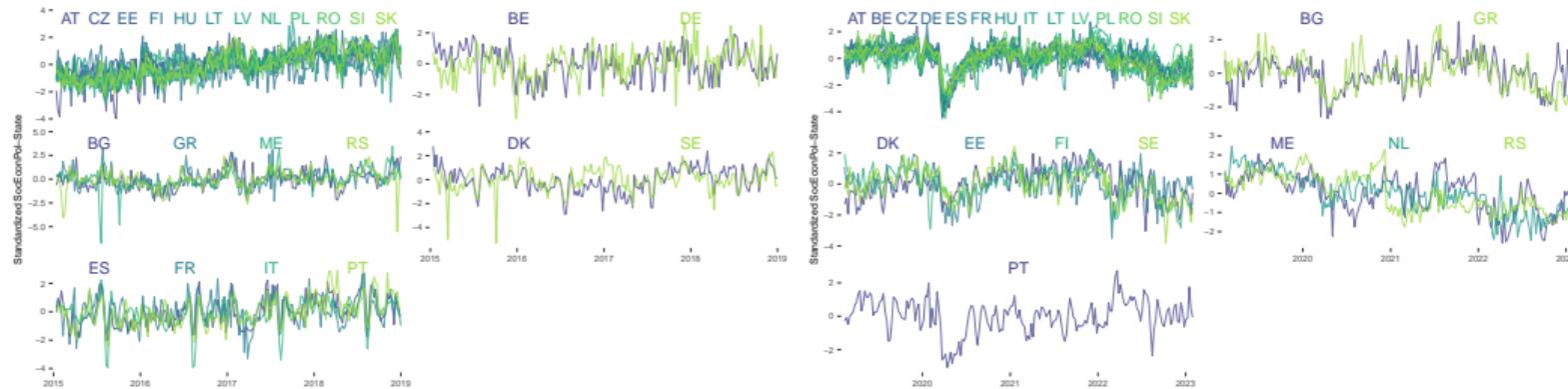


Figure 4: Standardized $X_T^{SocEconPol}$ by cluster for data 2015–2019 (left) and 2019–2023 (right).

Modelling of $X^{SocEconPol}_T$: Correlations with External Indicators

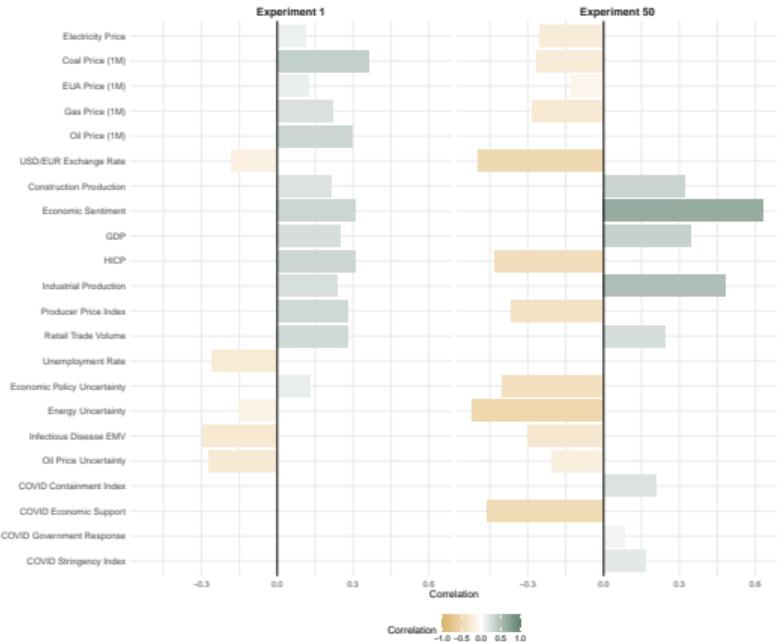


Figure 5: Correlations between $X^{SocEconPol}_T$ and energy prices, macroeconomic, energy and uncertainty indicators, for Germany 2015–2019 (left) and 2019–2023 (right).

► Pre-COVID (left panel):

- ▶ positive with GDP, production, prices
- ▶ negative with unemployment and some uncertainty measures
- ⇒ endogenous trend reflects economic expansion

► COVID / energy crisis (right panel):

- ▶ energy prices and several price indices turn negative
- ▶ links to uncertainty indicators strengthen
- ⇒ endogenous trend reflects contraction and heightened uncertainty

Modelling of $X^{SocEconPol}$: VAR, VECM, VETS

Incorporated through Vector models recognizing transnational dependence

Model	Unit-Root Assumption
Vectorautoregressive (VAR) Model	stationarity
Vector Error Correction Model (VECM)	one joint underlying unit root (single pan-European socio-economic and political non-stationary trend)
Vector Error-Trend-Seasonal (VETS) Model	country-specific unit root with common smoothing parameter (common memory of past observations)

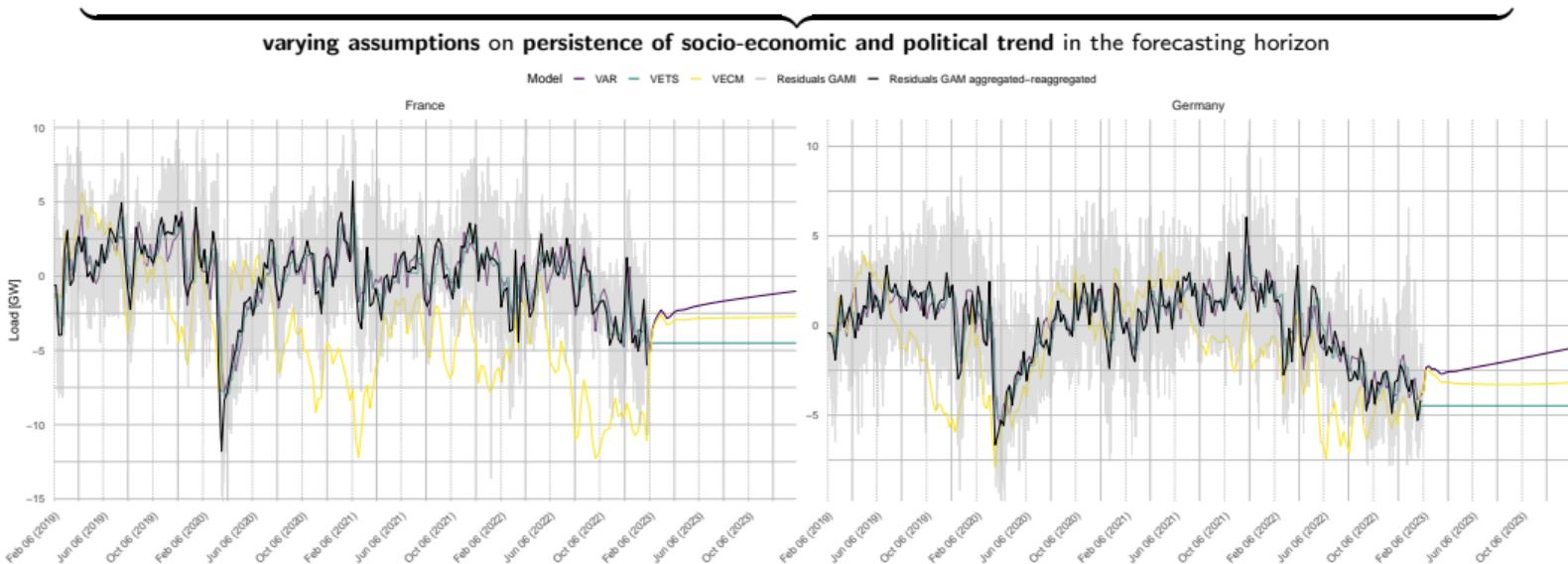


Figure 6: Fitted and forecasted $X_t^{SocEconPol-Stat}$ for in-sample data 2019–2023.

Results: Forecasting Performance in Terms of CRPS

	SRWA	FNN	VAR	VECM	VETS
Austria	0.333	0.277	0.252	0.252	0.257
Belgium	0.404	0.372	0.340	0.340	0.334
Bulgaria	0.253	0.210	0.205	0.205	0.228
Czech Rep.	0.343	0.260	0.247	0.248	0.253
Denmark	0.181	0.172	0.163	0.154	0.165
Estonia	0.049	0.040	0.040	0.039	0.043
Finland	0.541	0.427	0.422	0.408	0.421
France	5.052	2.834	2.708	2.748	2.834
Germany	2.422	2.043	1.789	1.814	1.695
Greece	0.419	0.335	0.326	0.317	0.362
Hungary	0.237	0.201	0.199	0.192	0.202
Italy	1.856	1.600	1.519	1.470	1.789
Latvia	0.036	0.034	0.031	0.029	0.031
Lithuania	0.063	0.054	0.054	0.058	0.060
Montenegro	0.030	0.028	0.027	0.029	0.027
Netherlands	0.633	0.751	0.734	0.723	0.669
Poland	0.802	0.590	0.590	0.538	0.575
Portugal	0.242	0.210	0.191	0.187	0.214
Romania	0.340	0.294	0.288	0.269	0.270
Serbia	0.256	0.287	0.258	0.246	0.252
Slovakia	0.186	0.152	0.146	0.130	0.143
Slovenia	0.086	0.078	0.072	0.079	0.086
Spain	1.249	1.185	1.091	1.052	1.091
Sweden	0.865	0.679	0.674	0.683	0.678
Sum	16.877	13.113	12.365	12.208	12.679

► Design:

- ▶ forecast horizon $H = 24 \times 7 \times 52$
- ▶ 24 European countries
- ▶ 50 forecasting experiments in 2015–2024
- ▶ 4 years of in-sample data per experiment

► Key findings:

- ▶ superior forecasting accuracy compared to benchmarks
- ▶ single pan-European socio-economic & political non-stationary trend

Results: Interpretable GAM with Trajectory Inputs

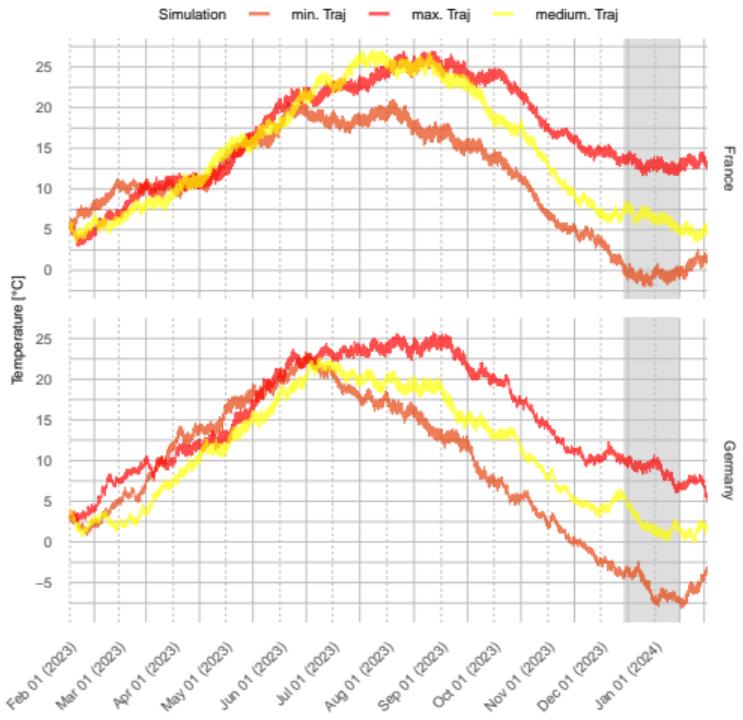


Figure 7: Temperature (left) and VETS SocEconPol (right) trajectories (min, median, max) based on the area under the curve in the Christmas holiday time.

Results: Interpretable GAM with Trajectory Inputs

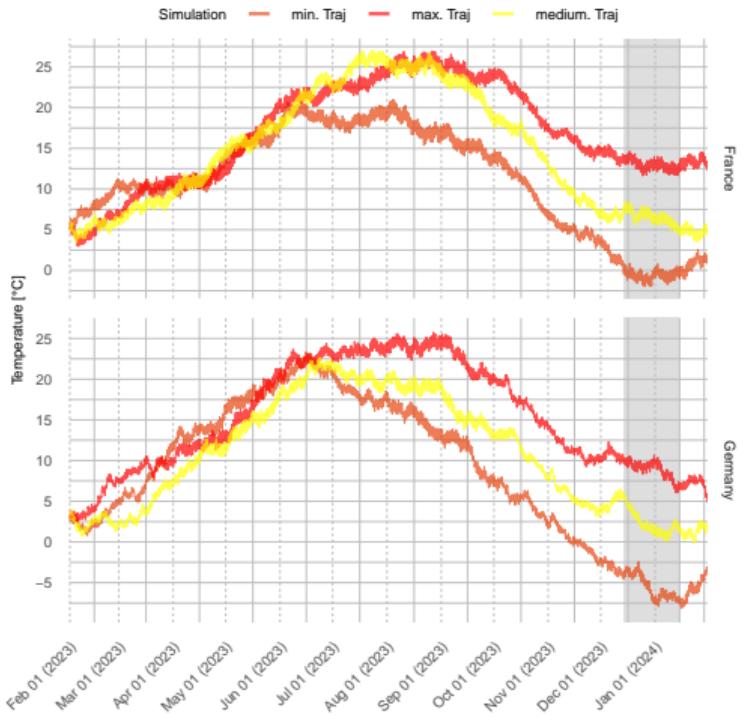
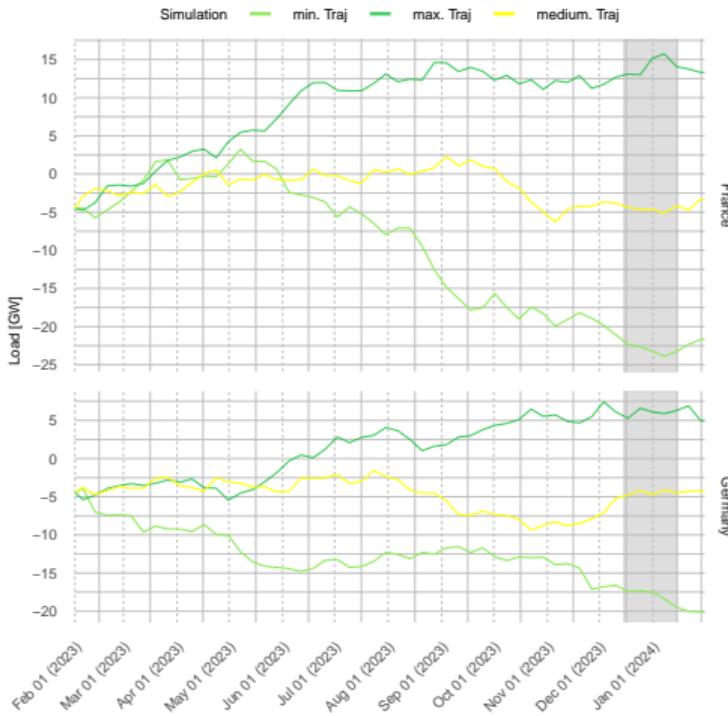
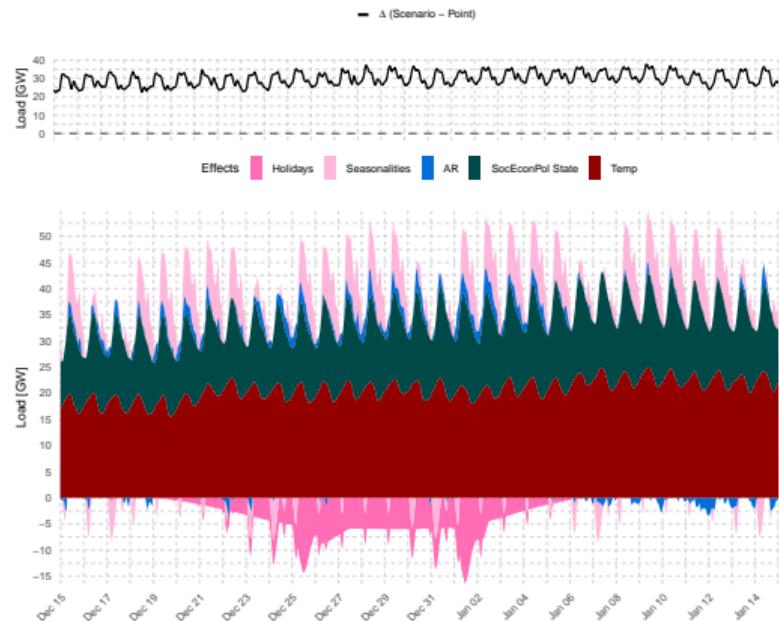


Figure 7: Temperature (left) and VETS SocEconPol (right) trajectories (min, median, max) based on the area under the curve in the Christmas holiday time.

⇒ **High-demand scenario** by combining **coldest temperature** with **most positive SocEconPol**

Results: Interpretable GAM with Trajectory Inputs

Tracking the Hourly Impact of High-Demand Scenario Inputs Across Mid-Term Forecasts



(a) France



(b) Germany

Figure 8: Difference between the scenario and point forecast (top) and stacked component contributions (bottom) during the Christmas holiday time (15 Dec 2023–14 Jan 2024).

Results: Interpretable GAM with Trajectory Inputs

Tracking the Hourly Impact of High-Demand Scenario Inputs Across Mid-Term Forecasts

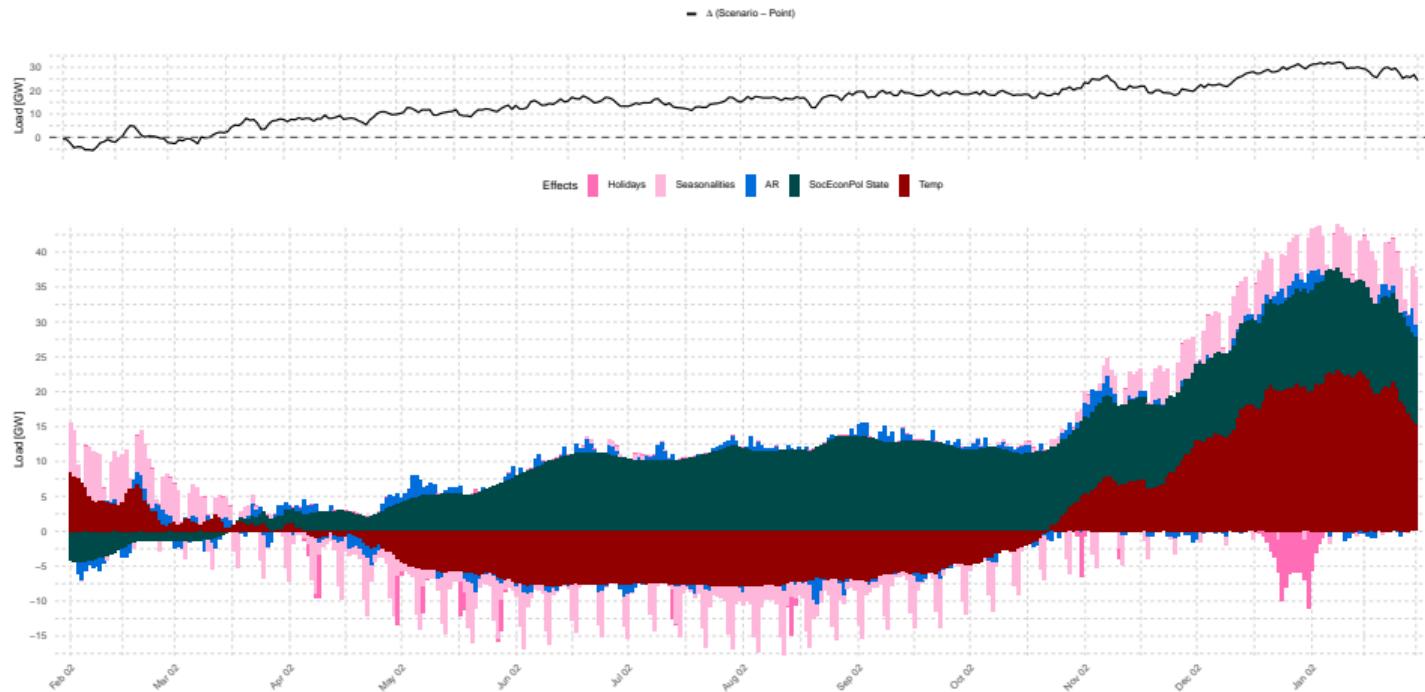


Figure 9: Daily averaged difference between the scenario and point forecast (top) and stacked component contributions (bottom) in France for the entire one-year forecasting horizon (Feb 2023–Jan 2024).

References I

Thank you for your attention! Questions?

- [1] Davis, K. O., Hong, T., & Fan, S. (2016). Probabilistic electric load forecasting: A tutorial review. *International Journal of Forecasting*, 32, 914–938. doi:10.1016/j.ijforecast.2015.11.011. MAG ID: 2275088575 S2ID: 154102a5a5e3a96fc37bd5e672137126f323490.
- [2] Hastie, T., & Tibshirani, R. (1999). *Generalized additive models*. Boca Raton, Fla: Chapman & Hall/CRC.
- [3] Pierrot, A., & Goude, Y. (2011). Short-Term Electricity Load Forecasting With Generalized Additive Models. *Proceedings of ISAP power Cordoba, Spain*, (pp. 593 – 600). doi:<https://doi.org/10.1109/ISDA18915.2011>.
- [4] Verwiebe, P. A., Seim, S., Burges, S., Schulz, L., & Müller-Kirchenbauer, J. (2021). Modeling Energy Demand—A Systematic Literature Review. *Energies*, 14, 7859. doi:10.3390/en14237859.
- [5] Wood, S. N. (2017). *Generalized Additive Models: An Introduction with R*. (2nd ed.). Chapman and Hall/CRC. URL: <https://www.taylorfrancis.com/books/9781498728348>. doi:10.1201/9781315370279.