Forecasting electricity prices in the
day-ahead market:
forecast averaging vs break points
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Research aim

Averaging forecasts over calibration windows

Vs

break points detection

Estimation of regression models for electricity price
forecasting (two approaches)

@ Evaluation of prediction accuracy

@ Assessment of effectiveness in energy storage management
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Data span:
2018 - 2025

Initial training window:
2018 - 2019 (2 years)

Q7

B Initial LASSO and Elastic Net calibration

> window:
2020 - 2022 (3 years)

1

oot Test set:

g—

o- 2023 - 2025 (3 years)

Data source: https://transparency.entsoe.eu

Variables

Date
Hour
Price
Load
Day-of-the-week

RES generation
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LASSO and Elastic Net calibration

ARX calibration
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Model ARX ‘g@

Pih = Pro + BriPa-1h + Br2pd-2.h + Pr3Pa-7h + BraPd—1min+

Br,5Pd—1,max + BheLan + Bhipa-1.24 + Z BhivtDi 4+ €an
| | ic{1,6,7}

= /Bh,O — Intercept

® /Bh,lpd—l,h, /Bh,2pd—2,h, ﬁh,SPd—7 ~ prices from 1, 2, 7 days ago

® /Bh,5pd—1,max, /Bh,élpd—l,min — Mminimum and maximum prices from the previous day
- /Bh’ﬁ.fjd’h — day-ahead forecasted load

/Bh,7pd_1,24 — price observed during the last hour of previous day
ZiE{1,6,7} 18h,i+7D,; — dummy variables for monday, saturday, sunday

Ed,h — random term id(0, o%)



Averaging forecasts over calibration windows

Averaging forecasts over calibration windows of
different lengths can lead to smaller prediction
errors

Hubicka, Marcjasz, Weron (2019)

Calibration windows:

from 28 to 728 days



Selected combinations for averaging

Many windows
AW(28:728)
OISO NIONNIIOINNILIES

Several individual windows Several shortest and longest windows

AW (364,728) AW (28:28:84,714:7:728)
@ ® o0 00

COMBINATIONS

Hubicka et al. (2019)



Regularization methods
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Selection of calibration window based on detected break points ‘g@

{33 PELT (Pruned Exact Linear Time) algorithm Killick et al. (2012)
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Averaging forecasts obtained using different variables

to determine break points

TWO THREE
AV(P, RES) AV(P, RES, RL)

ONE \ ! FOUR
P \ AV(P, L, RES, RL)

COMBINATIONS



Evaluation of prediction accuracy

e MAE (Mean Absolute Error)

e RMSE (Root Mean Square Error)

Evaluation of economic efficiency

e AOC (Average Opportunity Cost)

® SR (Sharpe Ratio)
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Results - AOC : AOC = Z(Profitfdea,m — Profit 4 ecastd)
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Top 5 models across markets

MAE RMSE

Model Model

Lassol4 , EN14

PELT2 (Price, Load, . .
Lasso7 , RES. RL) , AW(28:7:728) , AW(28:7:728)

AW(56,728) , Win(728) , EN7 , Lassol4

ENY/ : Lasso/ : AW(28:14:728) : AW(28:14:728)

EN14 , Lassol4 , Win(728) , AW(28:28:728)
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Selecting the appropriate calibration window Is not simple, but it has
a significant iImpact on the results

Averaging forecasts over calibration windows achieved more accurate
electricity price predictions (MAE, RMSE)

Averaging forecasts over calibration windows achieved better
economic results (AOC, Sharpe Ratio)

Elastic Net Is the best In economic terms and has a stable performance
across all markets




