

Forecasting electricity prices in the day-ahead market: forecast averaging vs break points detection

Author

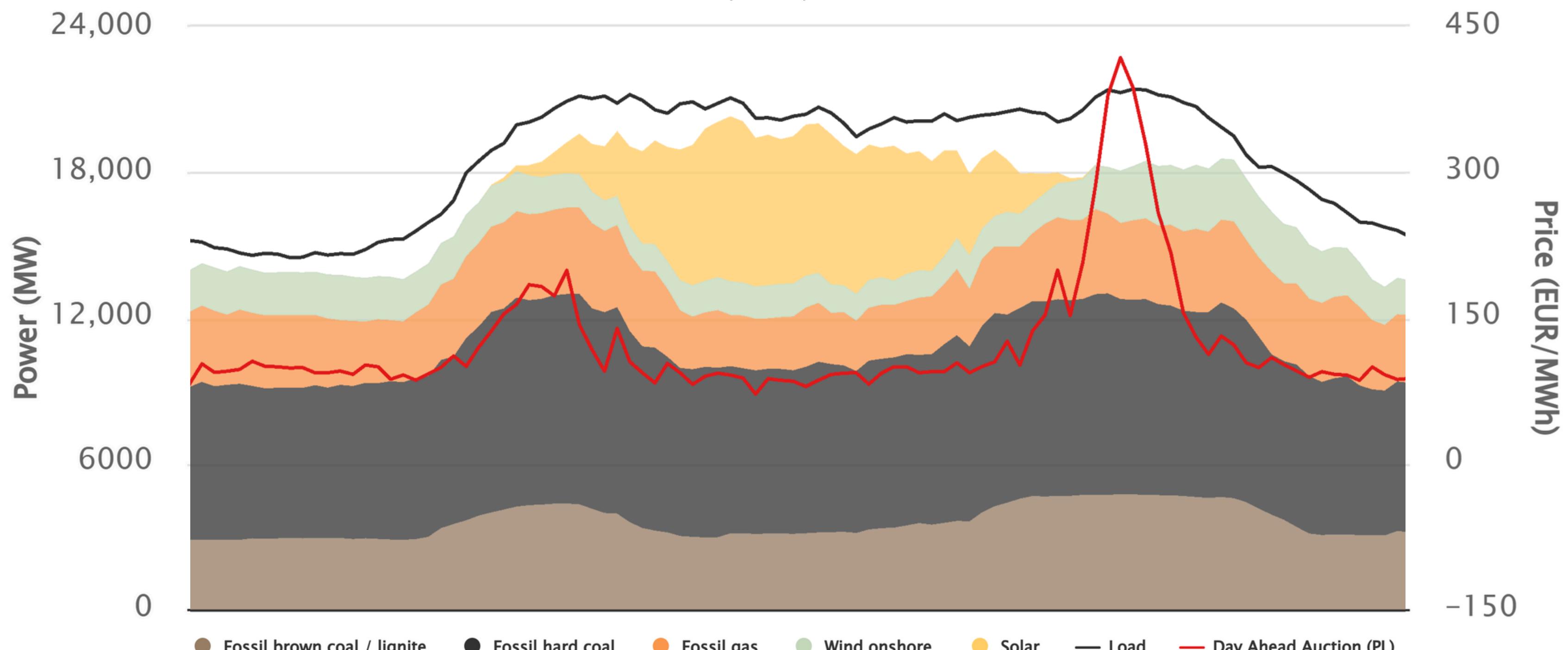
Piotr Zaborowski, Rafał Weron

Politechnika Wrocławskiego

Department of Operations Research
and Business Intelligence

Day-ahead market

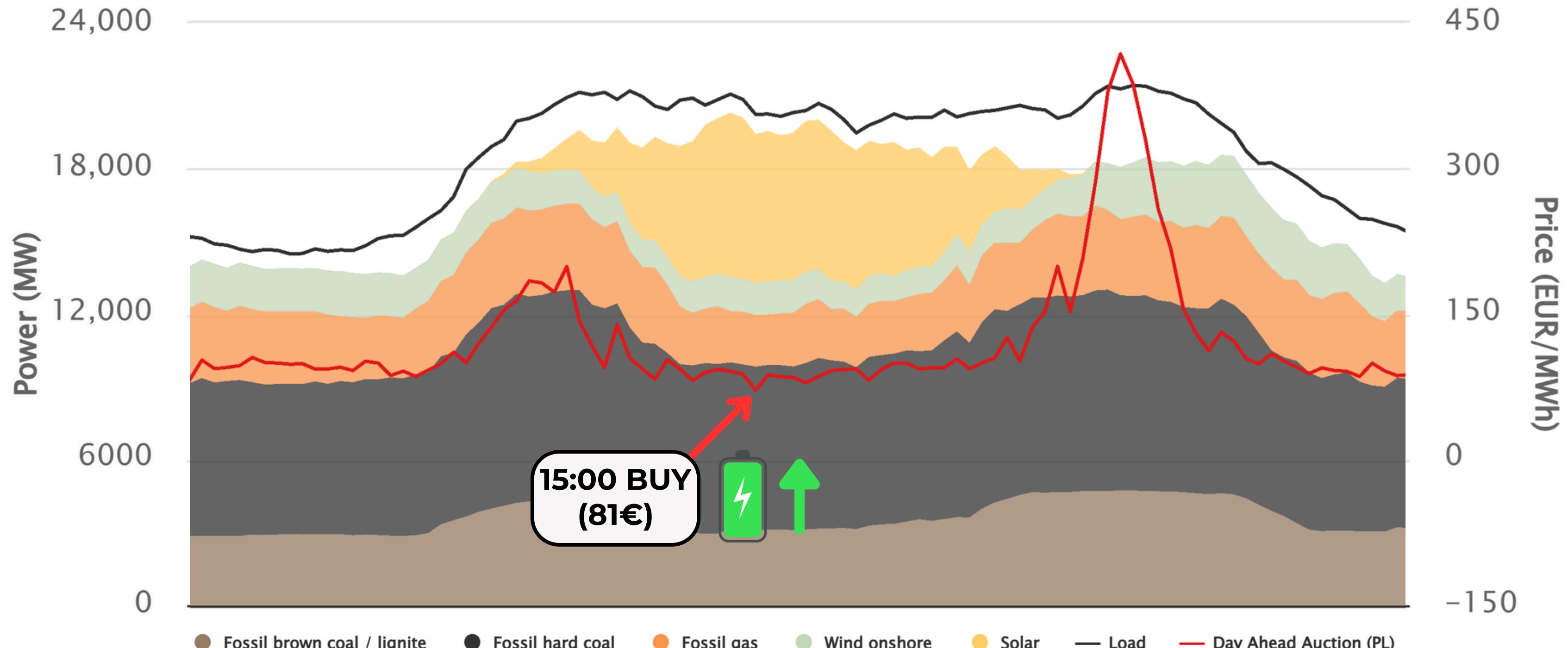
01/10/2025



Energy-Charts.info; Data Source: ENTSO-E; Last Update: 06/10/2025, 7:44 PM GMT+2

Day-ahead market

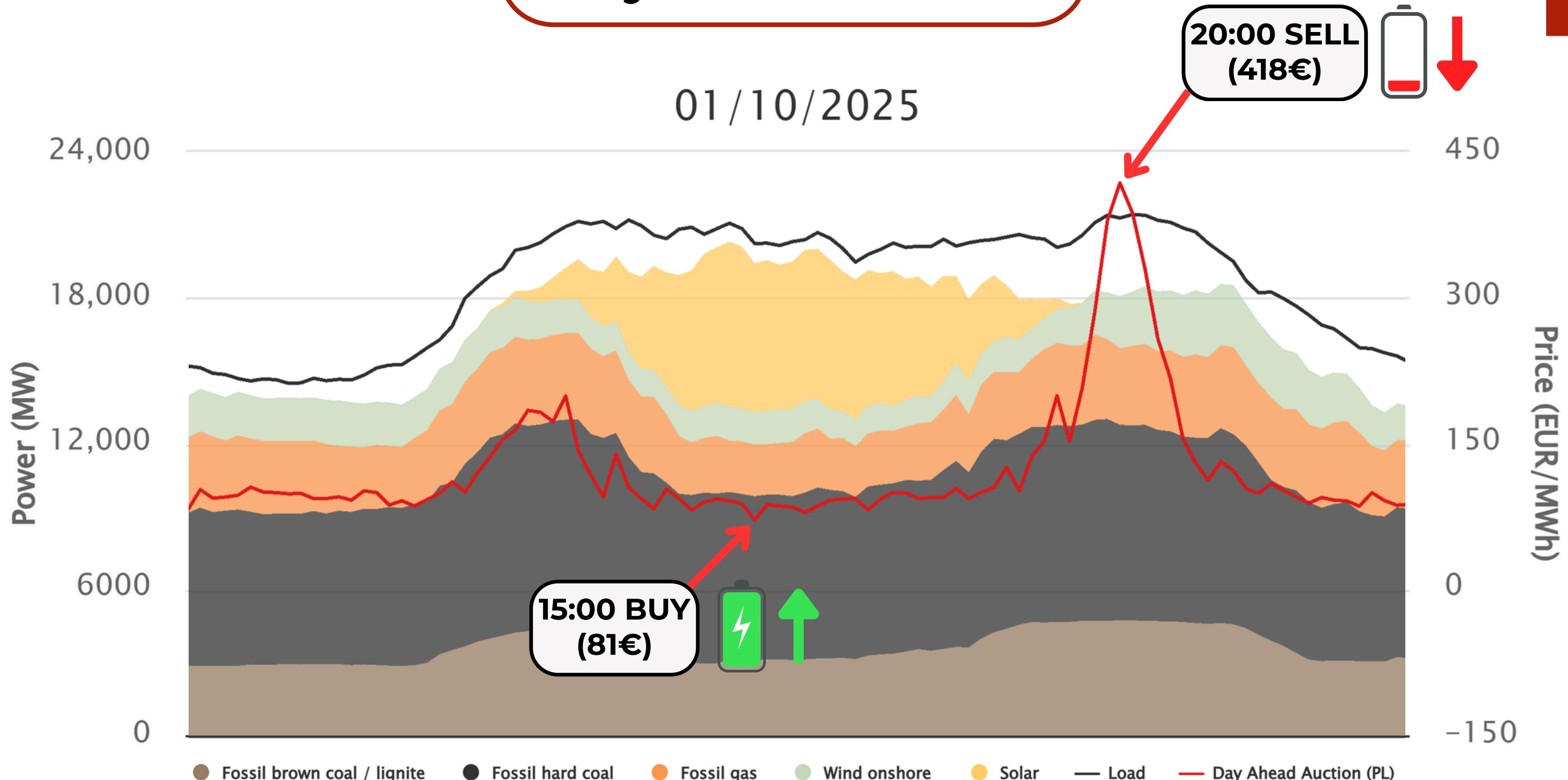
01/10/2025



Energy-Charts.info; Data Source: ENTSO-E; Last Update: 06/10/2025, 7:44 PM GMT+2

Day-ahead market

01/10/2025



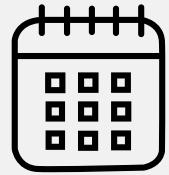
Averaging forecasts over calibration windows

vs

break points detection

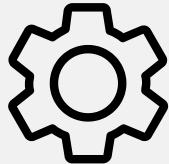
- 🎯 Estimation of regression models for electricity price forecasting (two approaches)
- 🎯 Evaluation of prediction accuracy
- 🎯 Assessment of effectiveness in energy storage management

4 EU markets



Data span:

2018 - 2025



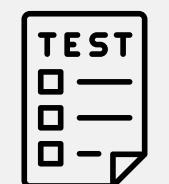
Initial training window:

2018 - 2019 (2 years)

Initial LASSO and Elastic Net calibration

window:

2020 - 2022 (3 years)



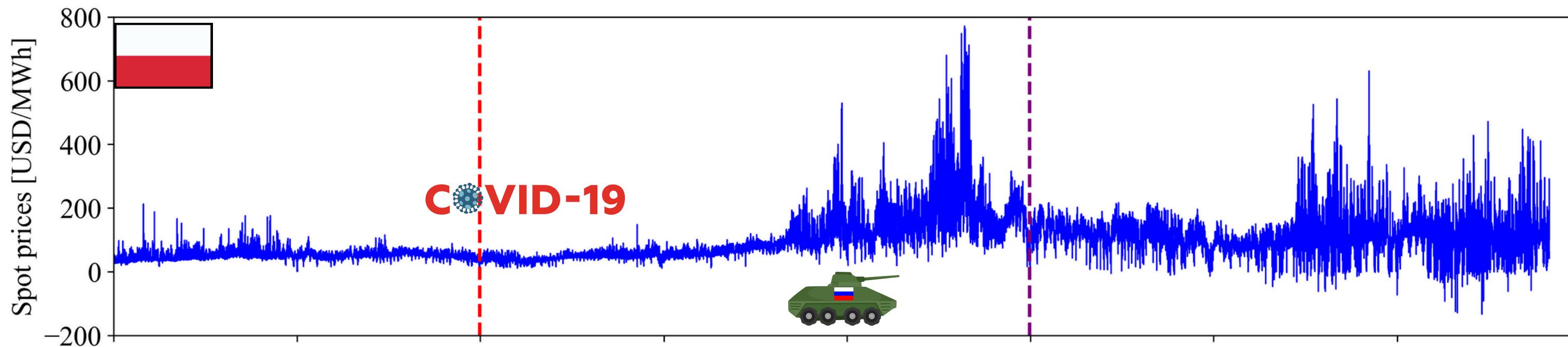
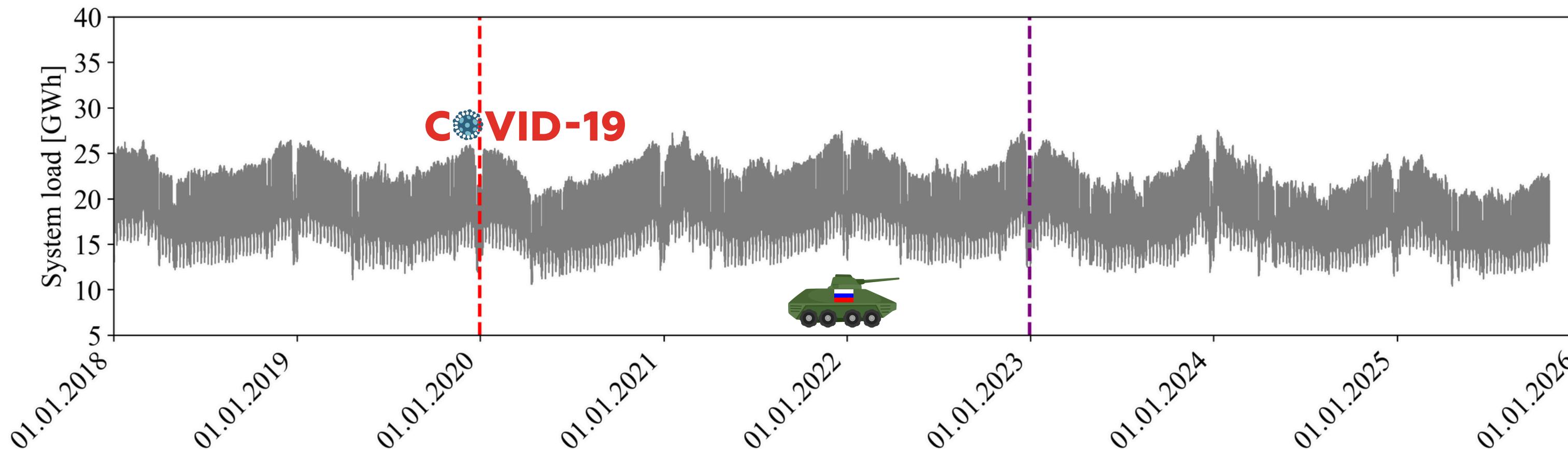
Test set:

2023 - 2025 (3 years)

Variables

- Date
- Hour
- Price
- Load
- Day-of-the-week
- RES generation

Data source: <https://transparency.entsoe.eu>



Model ARX

$$p_{d,h} = \underbrace{\beta_{h,0}}_{\text{red}} + \underbrace{\beta_{h,1}p_{d-1,h} + \beta_{h,2}p_{d-2,h} + \beta_{h,3}p_{d-7,h}}_{\text{blue}} + \underbrace{\beta_{h,4}p_{d-1,\min}}_{\text{green}} +$$

$$\underbrace{\beta_{h,5}p_{d-1,\max}}_{\text{green}} + \underbrace{\beta_{h,6}\hat{L}_{d,h}}_{\text{purple}} + \underbrace{\beta_{h,7}p_{d-1,24}}_{\text{orange}} + \underbrace{\sum_{i \in \{1,6,7\}} \beta_{h,i+7}D_i}_{\text{yellow}} + \underbrace{\varepsilon_{d,h}}_{\text{cyan}}$$

- $\beta_{h,0}$ – intercept
- $\beta_{h,1}p_{d-1,h}$, $\beta_{h,2}p_{d-2,h}$, $\beta_{h,3}p_{d-7}$ – prices from 1, 2, 7 days ago
- $\beta_{h,5}p_{d-1,\max}$, $\beta_{h,4}p_{d-1,\min}$ – minimum and maximum prices from the previous day
- $\beta_{h,6}\hat{L}_{d,h}$ – day-ahead forecasted load
- $\beta_{h,7}p_{d-1,24}$ – price observed during the last hour of previous day
- $\sum_{i \in \{1,6,7\}} \beta_{h,i+7}D_i$ – dummy variables for monday, saturday, sunday
- $\varepsilon_{d,h}$ – random term $\text{iid}(0, \sigma^2)$



Averaging forecasts over calibration windows

*Averaging forecasts over calibration windows of different lengths can lead to **smaller prediction errors***

Hubicka, Marcjasz, Weron (2019)

Calibration windows:

from 28 to 728 days

Selected combinations for averaging

Several individual windows

AW(364,728)

Many windows

AW(28:728)

Several shortest and longest windows

AW(28:28:84,714:7:728)

11

COMBINATIONS

Regularization methods

Elastic Net

$$\hat{\beta}_{\text{EN}} = \arg \min_{\beta} \left\{ \underbrace{\sum_{i=1}^n \left(y_i - \sum_{j=1}^p x_{ij} \beta_j \right)^2}_{\text{RSS}} + \lambda \underbrace{\left[\alpha \sum_{j=1}^p |\beta_j| + (1 - \alpha) \sum_{j=1}^p \beta_j^2 \right]}_{\text{penalty}} \right\}$$

Lasso

$$\hat{\beta}_{\text{Lasso}} = \arg \min_{\beta} \left\{ \underbrace{\sum_{i=1}^n \left(y_i - \sum_{j=1}^p x_{ij} \beta_j \right)^2}_{\text{RSS}} + \lambda \underbrace{\sum_{j=1}^p |\beta_j|}_{\text{penalty}} \right\}$$

Input

1

Select from every 7th ARX forecast

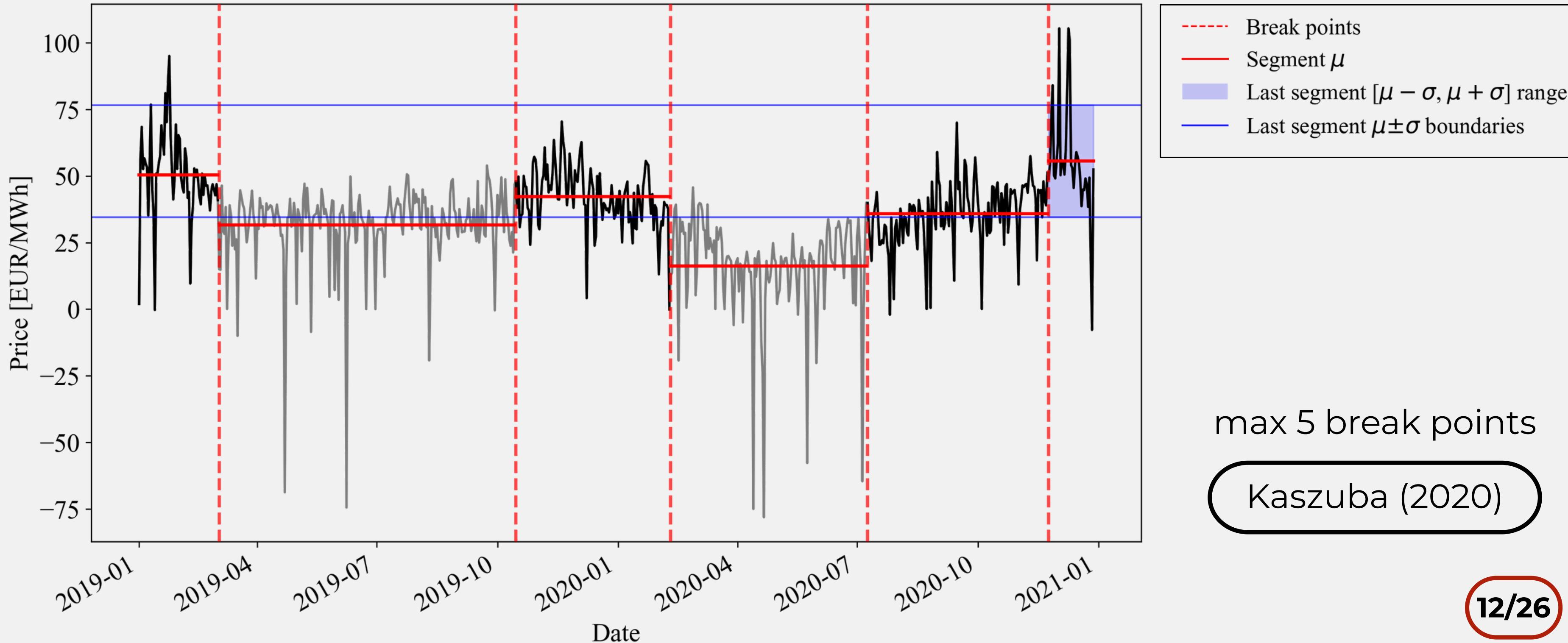
2

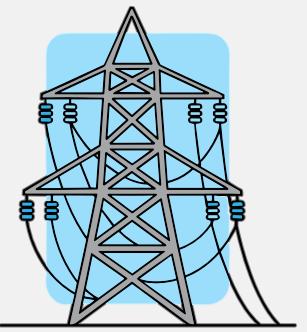
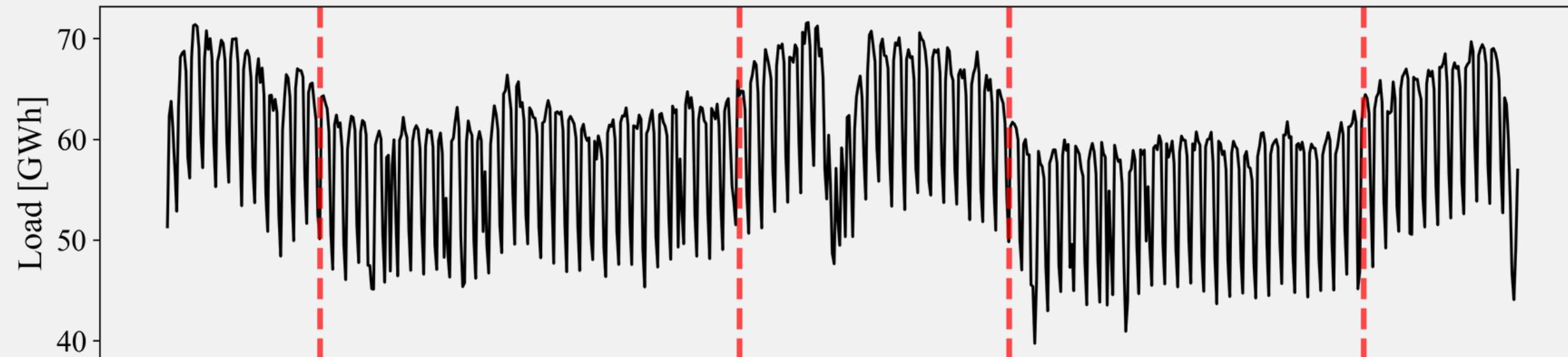
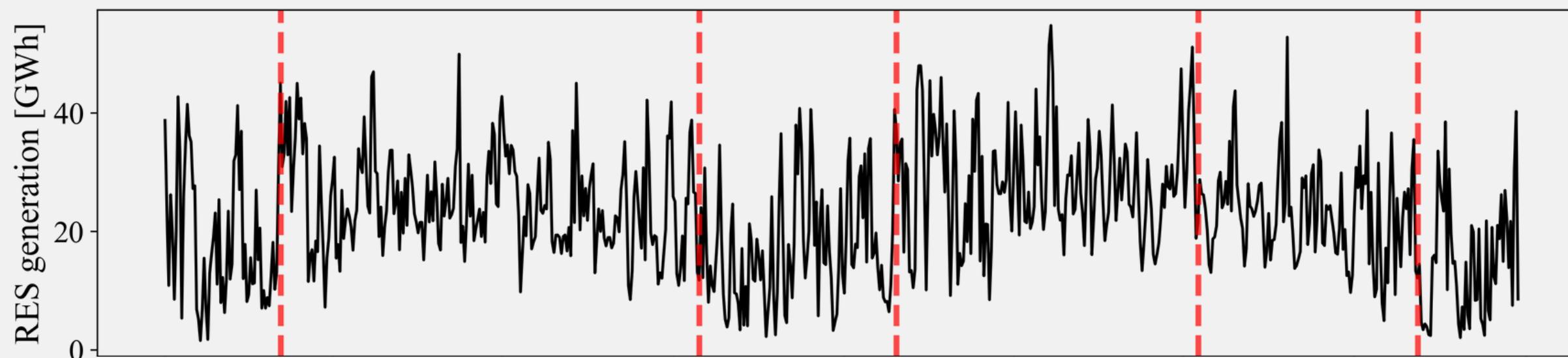
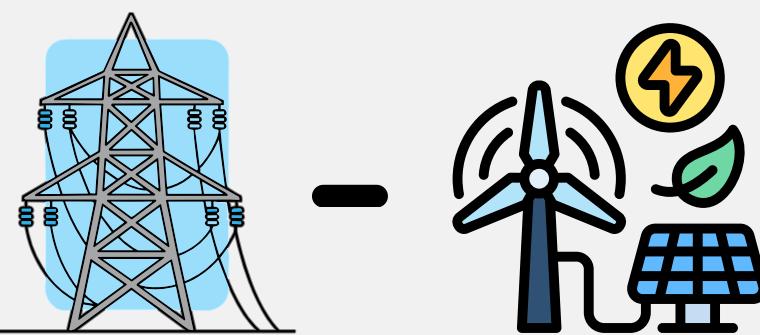
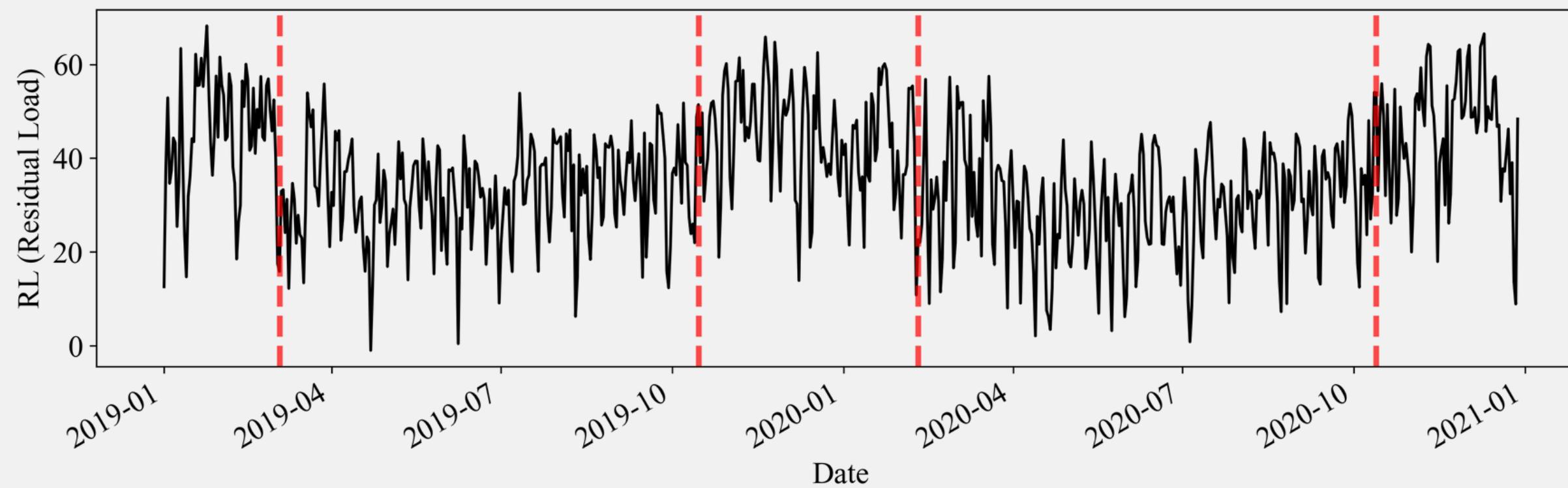
Select from every 14th ARX forecast

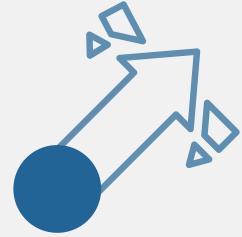
Selection of calibration window based on detected break points

PELT (Pruned Exact Linear Time) algorithm

Killick et al. (2012)







Averaging forecasts obtained using different variables to determine break points

ONE
P

TWO
AV(P, RES)

THREE
AV(P, RES, RL)

FOUR
AV(P, L, RES, RL)

15
COMBINATIONS

Evaluation of prediction accuracy

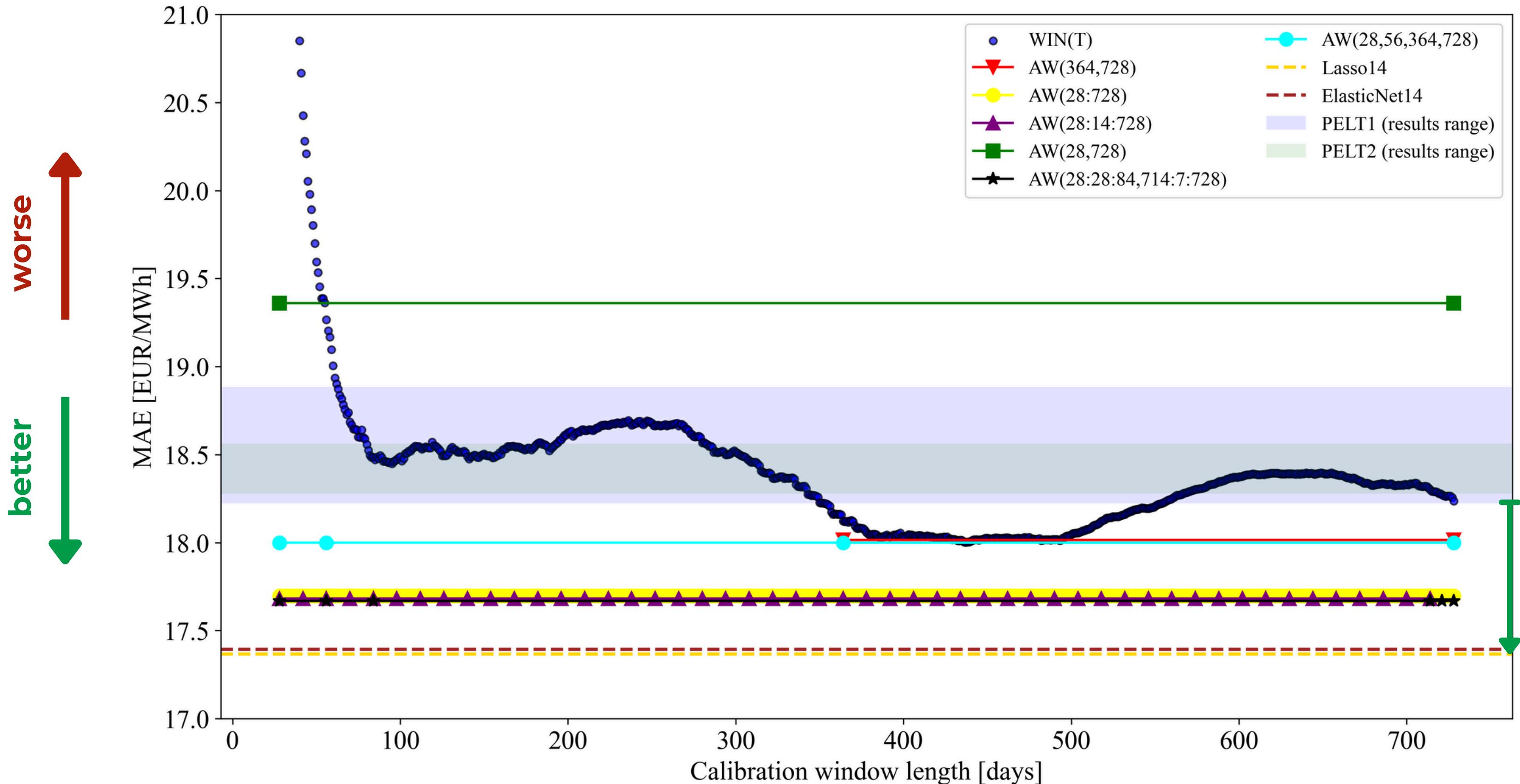
- MAE (Mean Absolute Error)
- RMSE (Root Mean Square Error)

Evaluation of economic efficiency

- AOC (Average Opportunity Cost)
- SR (Sharpe Ratio)

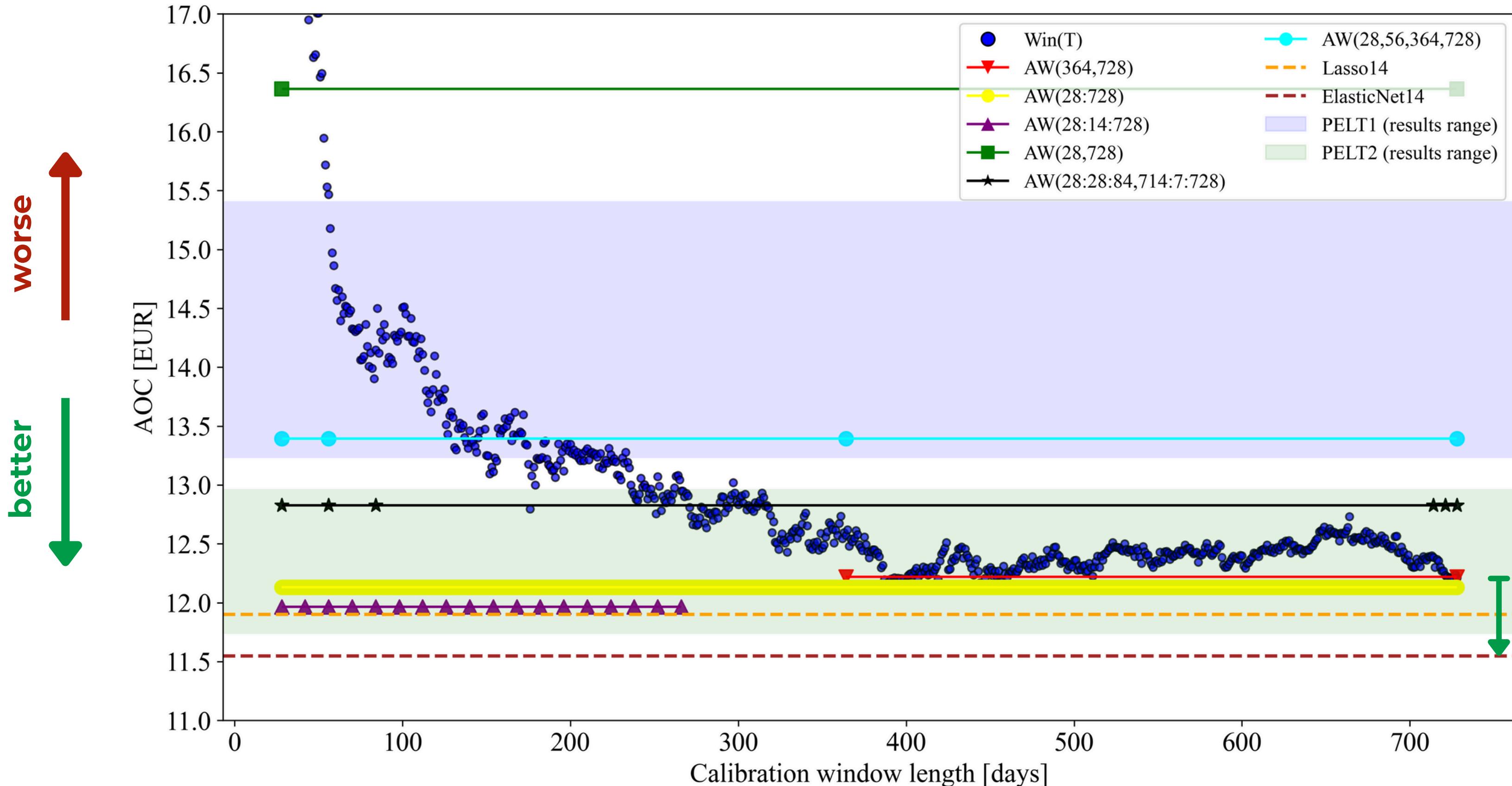
Results - MAE

$$MAE = \frac{1}{24D} \sum_{d=1}^D \sum_{h=1}^{24} |\hat{\varepsilon}_{d,h}|$$



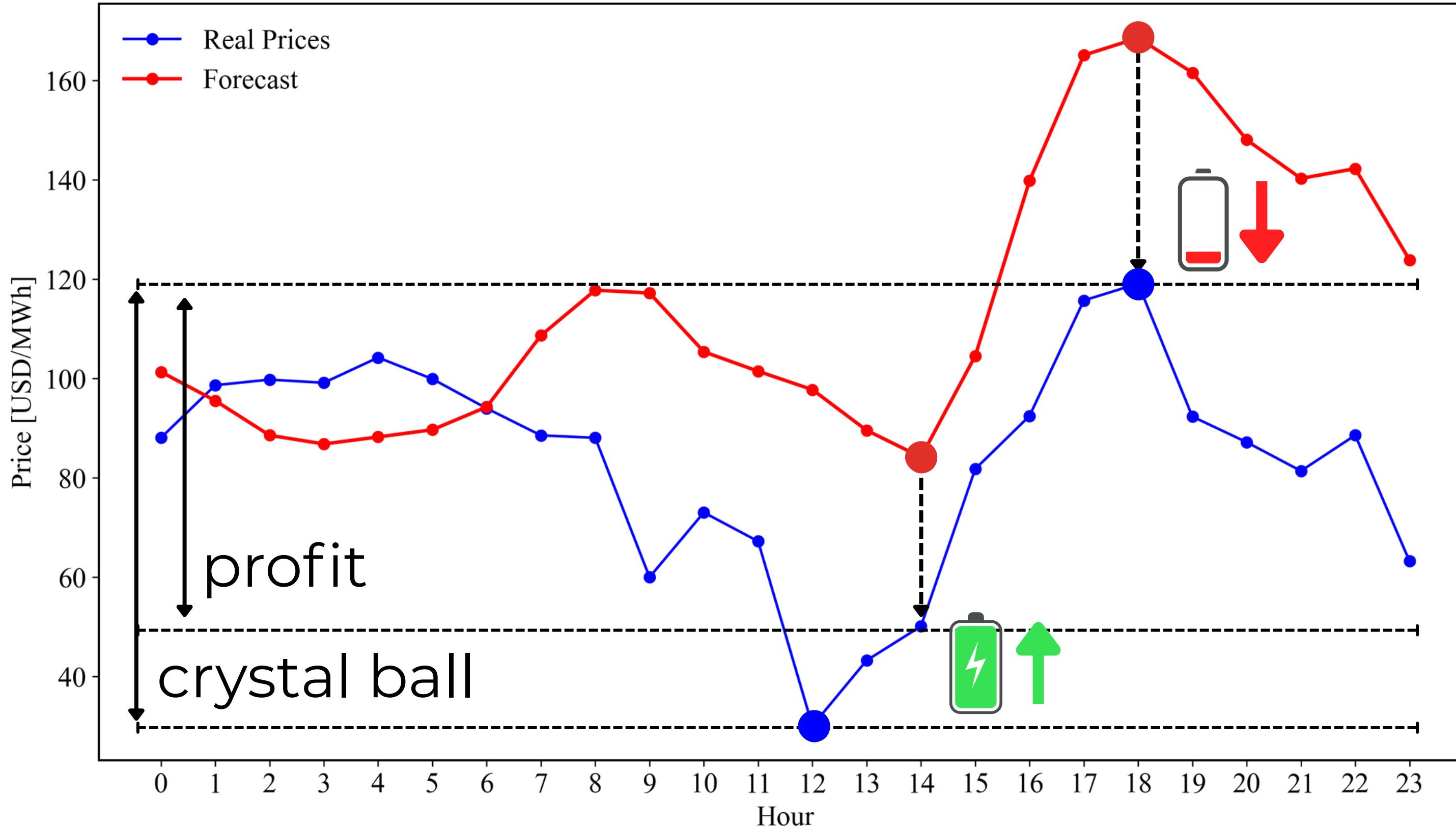
Results - AOC

$$AOC = \sum_{d=1}^N (\text{Profit}_{ideal,d} - \text{Profit}_{forecast,d})$$



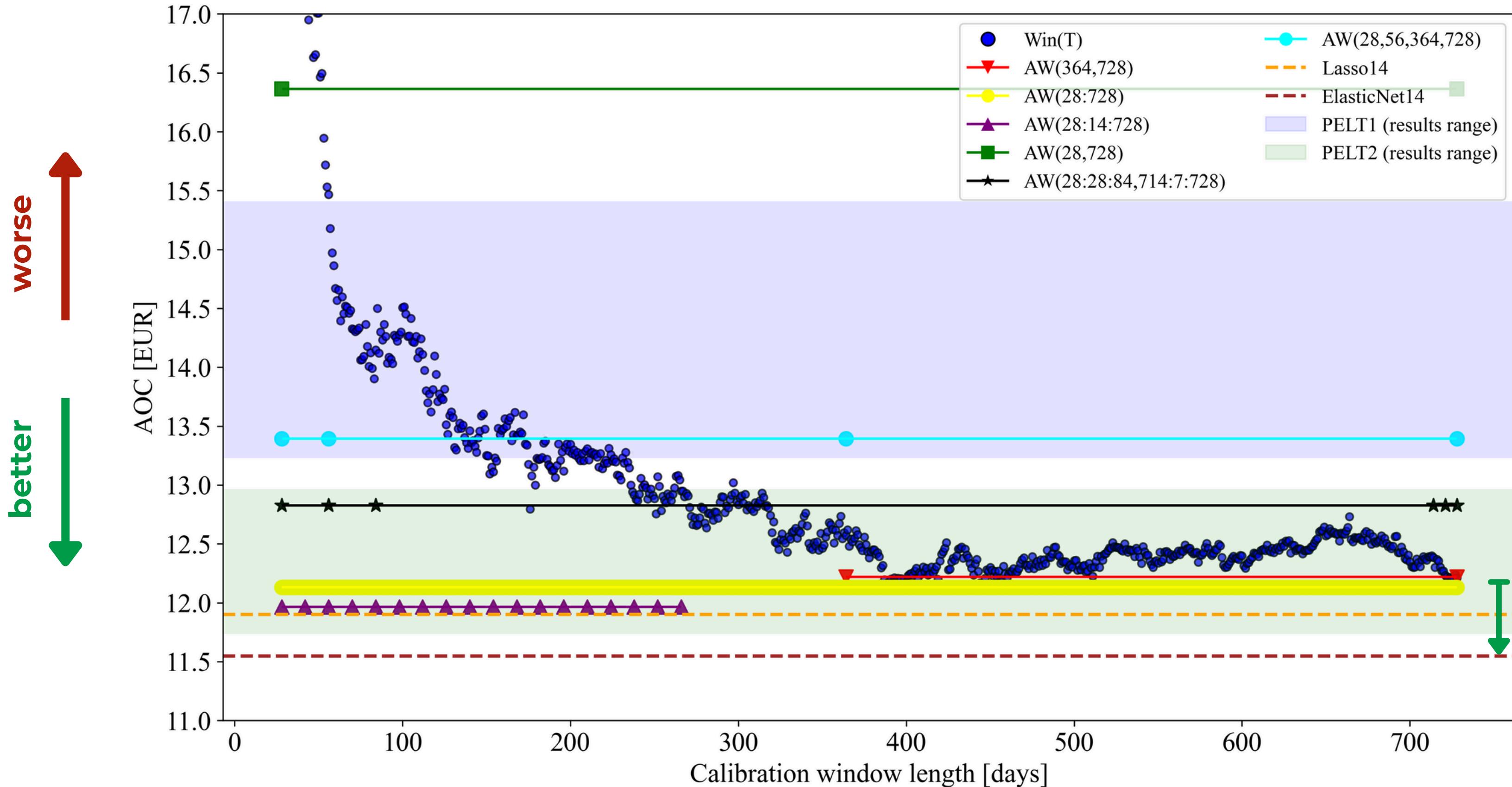
Results - AOC

$$AOC = \sum_{d=1}^N (\text{Profit}_{ideal,d} - \text{Profit}_{forecast,d})$$



Results - AOC

$$AOC = \sum_{d=1}^N (\text{Profit}_{ideal,d} - \text{Profit}_{forecast,d})$$

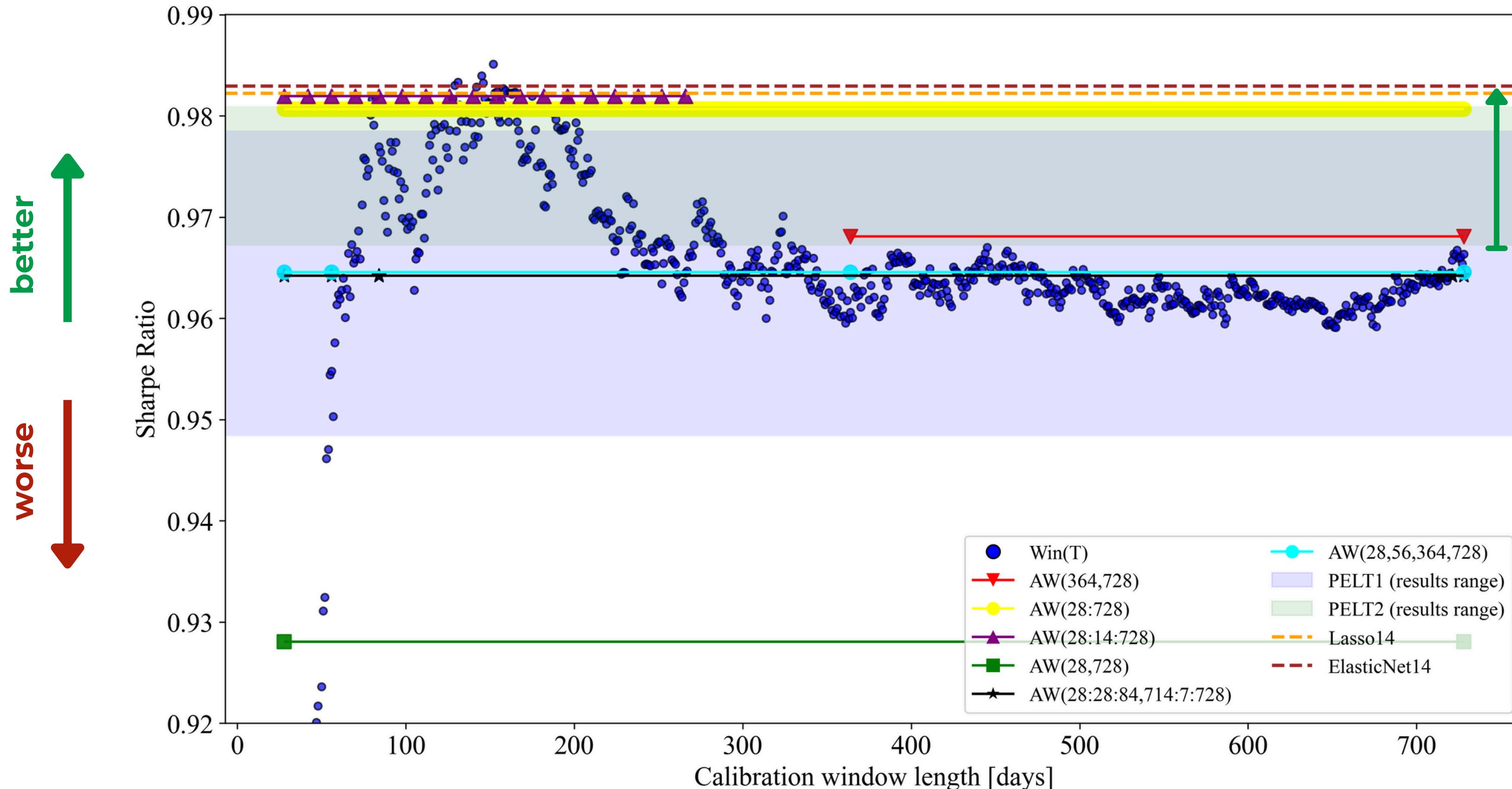


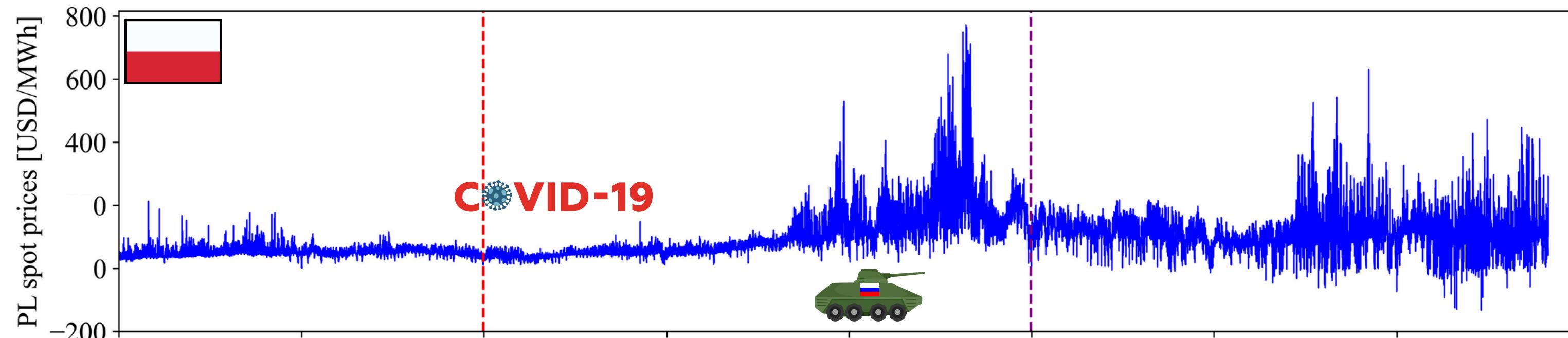
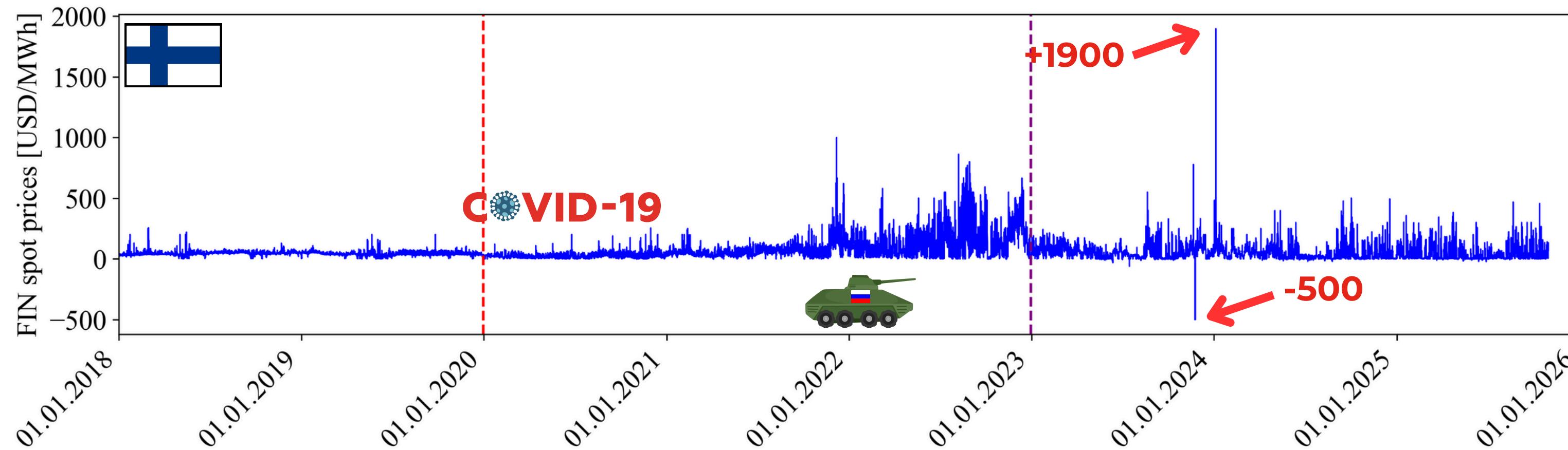
Results - SR

$$S = \frac{R_j}{\sigma_j}$$

R_j - mean profit

σ_j - standard deviation of profit

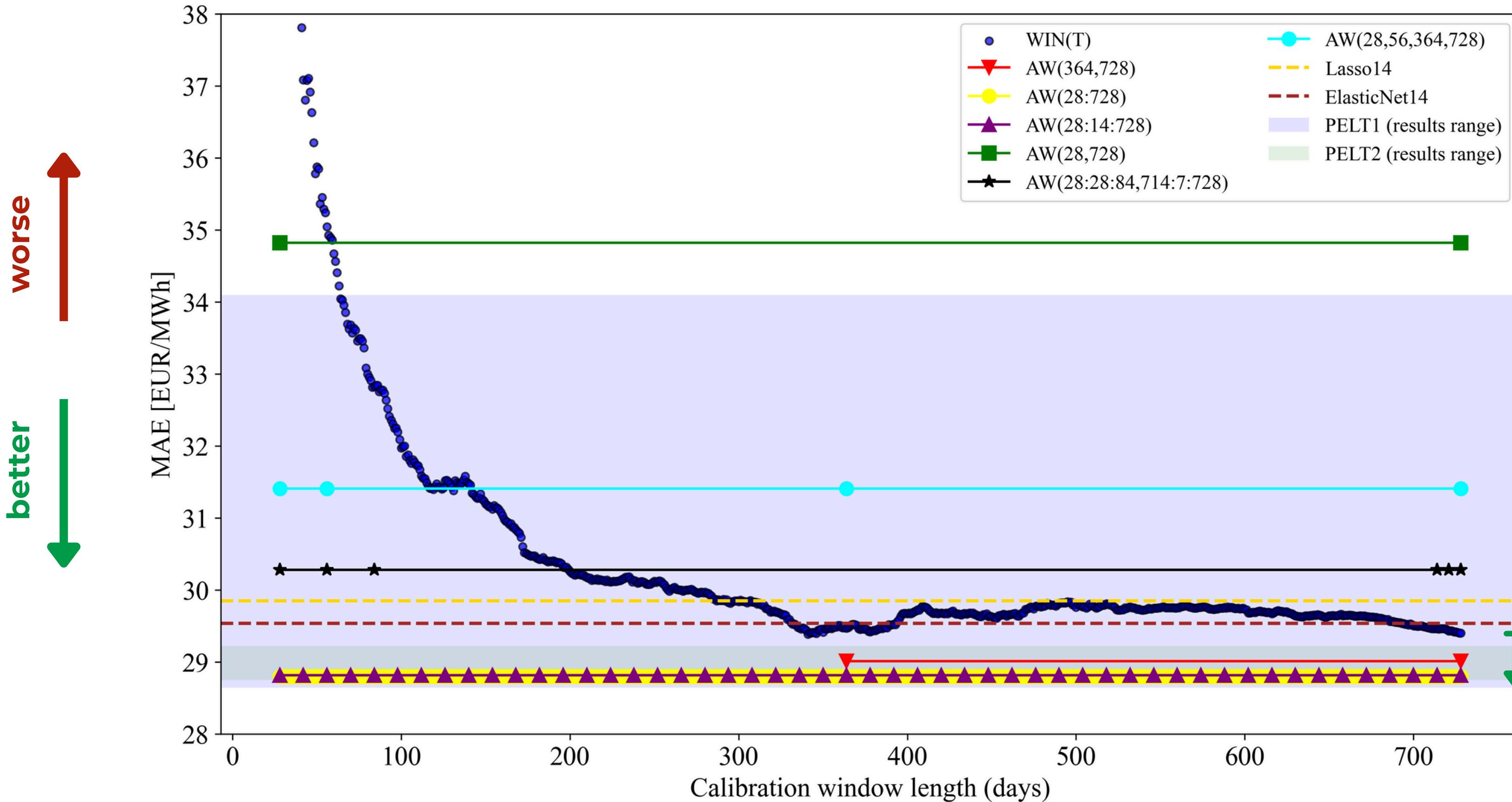




ARX calibration LASSO and Elastic Net calibration

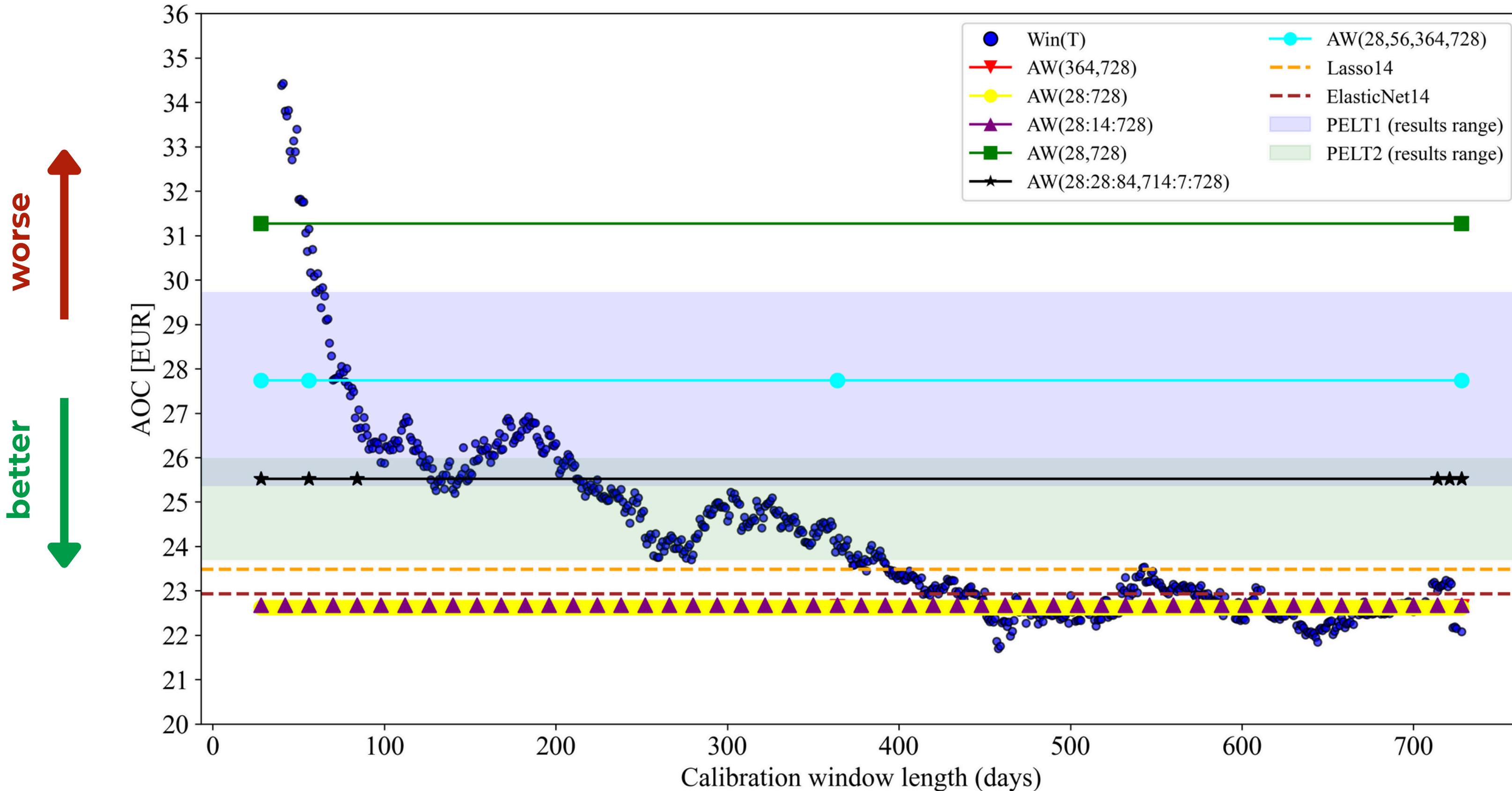
Results - MAE

$$\text{MAE} = \frac{1}{24D} \sum_{d=1}^D \sum_{h=1}^{24} |\hat{\varepsilon}_{d,h}|$$



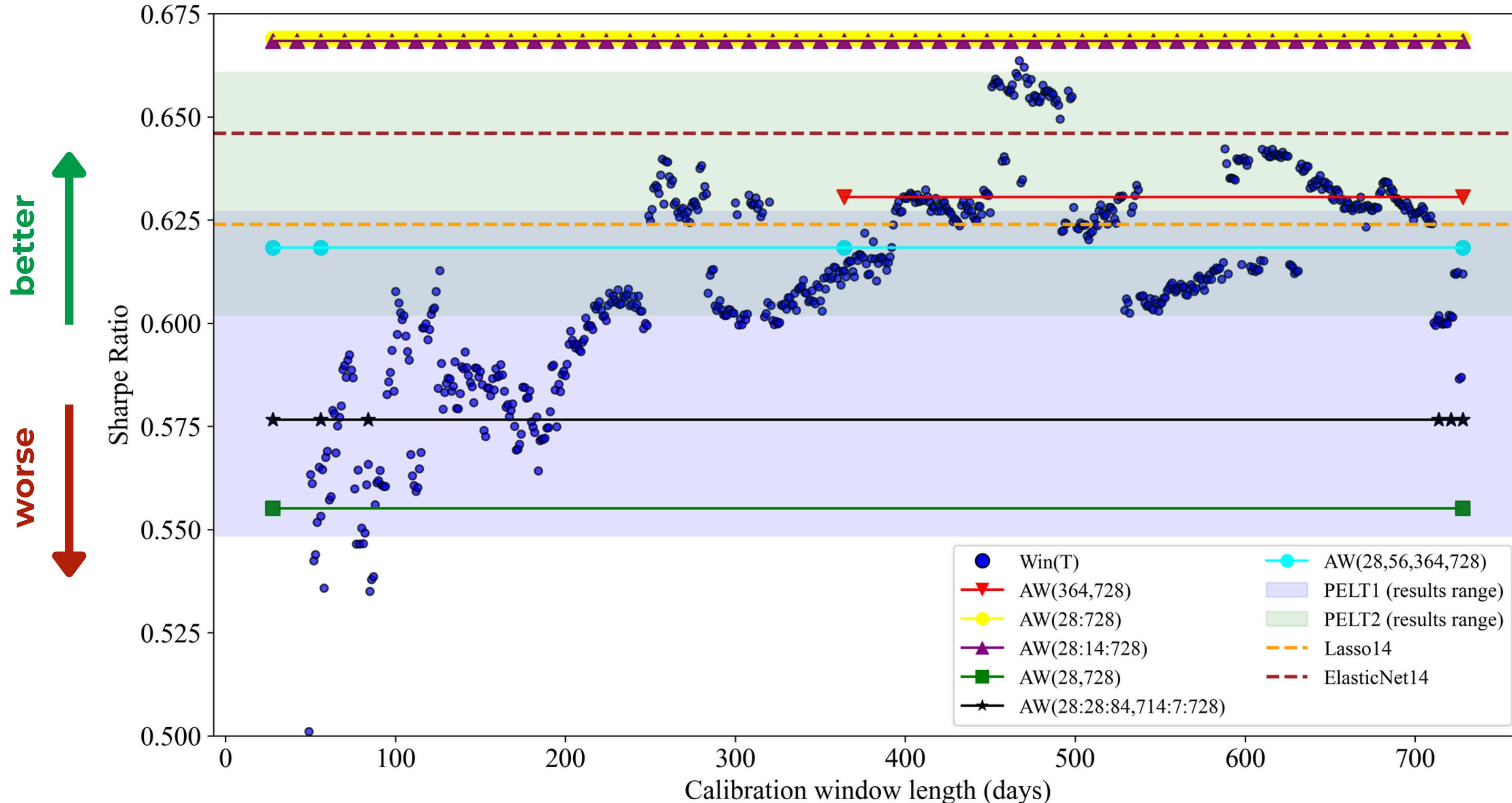
Results - AOC

$$AOC = \sum_{d=1}^N (Profit_{ideal,d} - Profit_{forecast,d})$$



Results - SR

$$S = \frac{R_j}{\sigma_j} \quad R_j - \text{mean profit} \quad \sigma_j - \text{standard deviation of profit}$$



Top 5 models across markets

MAE			RMSE			AOC			SR		
Rank	Model	G. mean	Rank	Model	G. mean	Rank	Model	G. mean	Rank	Model	G. mean
1	Lasso14	2,58	1	EN14	3,83	1	EN14	1,57	1	EN14	2,78
2	Lasso7	3,46	2	PELT2 (Price, Load, RES, RL)	4,29	2	AW(28:7:728)	3,44	2	AW(28:7:728)	2,78
3	AW(56,728)	4,53	3	Win(728)	4,33	3	EN7	3,74	3	Lasso14	3,39
4	EN7	4,61	4	Lasso7	5,05	4	AW(28:14:728)	4,61	4	AW(28:14:728)	4,12
5	EN14	5,42	5	Lasso14	5,07	5	Win(728)	5,18	5	AW(28:28:728)	4,23

Key findings

- Selecting the appropriate calibration window is not simple, but it has a significant impact on the results
- Averaging forecasts over calibration windows achieved more accurate electricity price predictions (MAE, RMSE)
- Averaging forecasts over calibration windows achieved better economic results (AOC, Sharpe Ratio)
- Elastic Net is the best in economic terms and has a stable performance across all markets