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Crude oil market

� Crude oil represent almost 30% of global total energy supply.

� It is a global market.

� Large swings in oil prices draw a lot of attention among policymakers,

academics and practitioners.

� Important questions arise:

1. Are price changes driven by demand or supply shocks?

2. What are the elasticities on the crude oil market?
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Structural VAR models for the crude oil market

� Large literature on using SVAR models for the global crude oil market

e.g. Kilian and Zhou, 2023

� Key parameter is the short-run price elasticity of oil supply, which determines

the importance of oil demand and oil supply shocks for the real price of oil

Kilian and Murphy, 2012; Herrera and Rangaraju, 2020

� Baumeister and Hamilton (2019) is a recent alternative approach to the

workhorse model by Kilian and Murphy (2014).

� Recently, it has been extensively criticized by Kilian (2022a,b).
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Debate on how to model crude oil market
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About this article

� We add to the debate on modelling global crude oil market with SVAR.

� We correct the demand equation in the BH approach and run the model.

� We use both the original and updated sample.

� We document how these changes affect key oil market elasticities.

� The price elasticity of oil supply drops markedly and is closer to zero.

� Demand shocks are the key driver of the real price of oil.
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Baumeister and Hamilton (2019) model

for the global crude oil market



The SVAR model

Structural VAR model:

Ayt = Bxt−1 +ut , ut ∼ N(0,D)

yt = (y1t ,y2t , . . . ,ynt)
′ is an n×1 vector of endogenous variables

A is an n×n matrix describing contemporaneous structural relations

x
′

t−1 = (y
′

t−1, . . . ,y
′
t−m,1)′ is a k×1 vector, with k =mn+1

B is an n×k matrix of parameters at lagged variables

ut is an n×1 vector of uncorrelated structural shocks

D = diag(d11, . . . ,dnn) is a diagonal matrix of size n×n.
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The specification of the SVAR

The structure of contemporaneous relations in terms of observables:

∆qt = αqp∆pt +b
′

1xt−1 +uSt

∆yt = αyp∆pt +b
′

2xt−1 +uYt

∆qt = βqy∆yt +βqp∆pt +χ
−1∆it +b

′

3xt−1 +uDt −χ
−1et

χ
−1∆it = ψ1∆qt +ψ3∆pt +b

′

4xt−1 +uIt +χ
−1et

where: ∆qt = log(Qt/Qt−1),∆yt = log(Yt/Yt−1),∆pt = log(Pt/Pt−1) and

∆it =∆It/Qt−1.

Additive Gaussian measurement error for inventories:

∆it = χ∆i∗t + et ⇐⇒ ∆i∗t = χ−1∆it −χ−1et
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Accounting identity

� Following Kilian and Murphy (2014): Ct ≡Qt −∆I ∗t

� BH assumes that oil consumption equals to: ∆ct ≈∆qt −∆i∗t

� This is a mistake, as pointed out by Kilian (2022a,b).

� We derive that:

∆ct =
Ct −Ct−1

Ct−1
=

∆Ct

Ct−1
=

∆(Qt −∆I ∗t )

Ct−1
≈ ∆(Qt −∆I ∗t )

Qt−1
=

=
∆Qt

Qt−1
− ∆2I ∗t

Qt−1
=∆qt −∆2i∗t .

While BH have used:

∆qt −∆i∗t =
∆Qt

Qt−1
− ∆I ∗t

Qt−1
=

Qt −Qt−1 −∆I ∗t
Qt−1

=

=
Ct −Qt−1

Qt−1
≈ Ct −Ct−1

Ct−1
=∆ct

8



The approximation error
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Notes: The figure presents the growth rate in oil consumption (∆c∗t , black line) across the updated sample, where

consumption is approximated as C∗
t = Qt − χ−1∆It , and χ = 0.603, as in BH. The series is compared to the BH

proxy, ∆qt −χ−1∆it (upper left corner, red line), and our proxy, ∆qt −χ−1∆2 it (upper right corner, red line), with

ρ̂ denoting the Pearson correlation coefficient. The distribution of differences between the series is presented in the

bottom row.
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Correcting the model

To correct this error, we substitute ∆it in model with ∆2it . New equations are:

∆qt = αqp∆pt +b
′

1xt−1 +uSt

∆yt = αyp∆pt +b
′

2xt−1 +uYt

∆qt = βqy∆yt +βqp∆pt +χ
−1∆2it +b

′

3xt−1 +uDt −χ
−1et

χ
−1∆2it = ψ1∆qt +ψ3∆pt +b

′

4xt−1 +uIt +χ
−1et

� Re-estimate the SVAR keeping all remaining settings unchanged.

� Use two samples: 01.1958-06.2024 and 01.1958-12.2016.
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The prior

Prior for matrix A:

αqp ∼ t+
3 (0.1,0.2)

αyp ∼ t−3 (−0.05,0.10)

βqp ∼ t−3 (−0.1,0.2)

βqy ∼ t+
3 (0.7,0.2)

ψ1 ∼ t3(0,0.5)

ψ3 ∼ t3(0,0.5)

χ ∼ Beta(0.6,0.009)

h1 ∼ At3(0.6,1.6,2)

h2 ∼ t3(0.8,0.2)

Prior for other parameters:

� τi and κi set in line with the standard Bayesian VAR literature.

� standard hyperparameters (λ0 = 0.5, λ1 = 1, λ3 = 100).

� Bayesian estimation: M∗ draws after M burn-in (M =M∗ = 1e6).
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Prior and posterior distribution

Reported statistic αqp αyp βyp βqp χ ψ1 ψ3 ρ h1 h2

P
ri

or

A
ll

m
o

d
el

s

Type t+ t− t+ t− Beta t t Beta At t

Location 0.100 -0.050 0.700 -0.100 0.600 0.000 0.000 0.25*χ 0.600 0.800

Scale 0.200 0.100 0.200 0.200 0.009 0.500 0.500 0.12*χ 1.600 0.200

D.o.f. 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000

Skew — — — — — — — — 2.000 —

P
o

st
er

io
r

B
H

1
6 5% 0.072 -0.008 0.434 -0.622 0.438 -0.411 -0.090 0.061 0.491 0.988

50% 0.145 -0.002 0.724 -0.355 0.603 -0.138 -0.035 0.145 0.631 0.997

95% 0.303 0.000 1.092 -0.181 0.754 0.032 0.031 0.241 0.880 1.000

R
S

1
6

5% 0.064 -0.008 0.429 -0.627 0.437 -0.446 -0.120 0.067 0.474 0.986

50% 0.132 -0.002 0.728 -0.353 0.604 -0.091 -0.047 0.161 0.629 0.997

95% 0.303 0.000 1.122 -0.166 0.756 0.092 0.029 0.269 0.925 1.000

B
H

2
4 5% 0.032 -0.007 0.596 -0.715 0.446 -0.193 -0.071 0.060 0.460 0.987

50% 0.071 -0.002 0.876 -0.450 0.608 -0.047 -0.023 0.131 0.580 0.998

95% 0.126 0.000 1.421 -0.295 0.756 0.063 0.030 0.214 0.773 1.000

R
S

2
4

5% 0.029 -0.007 0.595 -0.670 0.439 -0.152 -0.088 0.068 0.444 0.987

50% 0.065 -0.002 0.871 -0.435 0.604 0.011 -0.032 0.148 0.569 0.997

95% 0.119 0.000 1.376 -0.280 0.753 0.123 0.025 0.237 0.747 1.000

Notes: In the table t denotes a Student t distribution and At denotes an asymmetric Student t distribution. Signs + and − indicate that

the distribution is truncated to be either positive or negative, respectively. D.o.f stands for degrees of freedom. BH16 and BH24 denote

results for the original BH model estimated with data ending in December 2016 and in June 2024, respectively. RS16 and RS24 show the

results after substituting equations 3 and 4 of the model on respective samples.
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Impulse response functions:

BH16 (red) vs RS24 (blue)
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Note: The areas denotes the 68 and 95 percent posterior credible sets.
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IRF – with similar response to oil prices:

BH16 (red) vs RS24 (blue)
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Notes: The areas denotes the 68 and 95 percent posterior credible sets. For BH16 responses to one standard

deviation shocks. For RS24 the responses are normalized so that the initial response of the real price of oil to the

shocks is the same as in BH16.
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Forecast Error Variance Decomposition

uS uY uD uI uS uY uD uI

BH16 RS16

h=1 27.3

[10.0-63.4]

0.8

[0.2-1.9]

65.2

[30.3-85.4]

5.8

[3.1-8.4]

23.4

[7.7-64.1]

0.8

[0.2-1.9]

67.6

[28.2-87.2]

7.2

[3.6-10.9]

h=6 27.9

[11.0-61.5]

3.4

[1.5-6.4]

62.4

[29.9-82.2]

5.4

[3.0-7.9]

24.3

[8.9-62.2]

3.4

[1.5-6.4]

64.6

[27.7-84.1]

6.7

[3.4-10.0]

h=12 28.0

[11.4-60.6]

3.8

[1.8-6.8]

61.8

[30.1-81.4]

5.5

[3.1-8.0]

24.6

[9.4-61.6]

3.8

[1.8-6.9]

63.9

[27.9-83.2]

6.6

[3.4-9.9]

h=18 27.9

[11.4-60.3]

3.9

[1.9-7.0]

61.7

[30.2-81.1]

5.6

[3.1-8.2]

24.6

[9.5-61.3]

3.9

[1.9-7.0]

63.7

[27.9-82.9]

6.7

[3.4-10.0]

BH24 RS24

h=1 14.3

[6.2-29.8]

1.8

[0.8-3.7]

78.3

[60.9-88.9]

5.3

[2.8-8.1]

12.2

[5.2-27.2]

1.8

[0.9-3.7]

79.2

[61.7-89.4]

6.4

[3.4-10.1]

h=6 15.9

[7.6-31.0]

3.4

[1.9-5.8]

75.6

[58.7-86.3]

4.7

[2.6-7.2]

14.1

[6.7-28.8]

3.4

[1.9-5.7]

76.4

[59.2-86.8]

5.7

[3.1-9.0]

h=12 16.1

[7.9-30.9]

4.1

[2.4-6.5]

74.6

[58.1-85.3]

4.8

[2.7-7.4]

14.4

[7.1-28.9]

4.0

[2.4-6.4]

75.4

[58.5-85.8]

5.8

[3.2-9.0]

h=18 16.2

[8.0-30.8]

4.2

[2.6-6.8]

74.3

[57.9-84.9]

4.9

[2.7-7.4]

14.5

[7.2-28.8]

4.2

[2.5-6.7]

75.1

[58.3-85.5]

5.8

[3.2-9.1]

Notes: In the table uS , uY , uD and uI denote posterior median contributions of flow supply, flow demand, oil preference and storage

demand shocks (in %) to the overall variability in the real price of oil along with the 5th and 95th percentile of the posterior distribution

(in square brackets). BH16 and BH24 denote results for the original BH model estimated with data ending in December 2016 and in June

2024, respectively. RS16 and RS24 show the results after substituting equations 3 and 4 of the model on respective samples.
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Historical decomposition of oil prices (RS24 model)
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Notes: Black solid line represents the logarithmic annual rate of change in the real oil price. In the figure uS , uY , uD and uI denote the

posterior mean contribution of the flow supply, flow demand, oil preference and storage demand shocks, respectively.
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Main takeaways

1. We studied how the estimates of the global oil market SVAR model proposed by

Baumeister and Hamilton (2019) are affected by an error in the specification of

their demand equation. We also checked whether the estimates are sensitive to

the inflow of recent data.

2. We show that both changes reduce the estimate of the short-run price elasticity

of oil supply.

3. It leads to a substantial decrease in the contribution of oil suppy shocks to real oil

price.

4. Our results corroborate the substance of conclusions in Kilian and Murphy (2014),

Zhou (2020) or Inoue and Kilian (2022).

5. Results from Baumeister and Hamilton (2019) are not robust to reasonable changes

in specifications as shown also by Herrera and Rangaraju (2020) or Braun (2023).
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The prior

We decompose the prior:

p(A,B,D) = p(B|A,D)×p(D|A)×p(A). (1)

Prior for the covariance matrix p(D|A)

p(D|A) =
n

∏
i=1

p(dii |A)

d−1
ii |A ∼ Γ(κi ,τi (A)),

(2)

Prior for the matrix of parameters at lagged variables p(B|A,D)

p(B|A,D) =
n

∏
i=1

p(bi |D,A)

bi |A,D ∼ N(mi ,diiMi ),

(3)

Prior for the contemporaneous relations matrix p(A) freely chosen.
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The posterior (1)

The decomposition of the posterior:

p(A,B,D|YT ) = p(B|A,D,YT )×p(D|A,YT )×p(A|YT ). (4)

The posterior for the covariance matrix p(D|A,YT )

p(D|A,YT ) =
n

∏
i=1

p(dii |A,YT )

d−1
ii |A,YT ∼ Γ(κ∗

i ,τ
∗
i (A)),

(5)

where:

κ
∗
i = κi +(µT1 +T2)/2

τ
∗
i (A) = τi (A)+ζ

∗
i (A)

(6)
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The posterior (2)

ζ ∗
i (A) =

(
Ỹ′
i (A)Ỹi (A)

)
−
(

Ỹ′
i (A)X̃i

)(
X̃′
i X̃i

)−1(
X̃′
i Ỹi (A)

)
is the sum of

squared residuals from regression of Ỹi (A) on X̃i defined as:

Ỹi (A)
(T+k)×1

=
[√

µy′1ai . . .
√

µy′T1
ai y′T1+1ai . . . y′T ai m′

iPi

]′
X̃i

(T+k)×k
=
[√

µx0 . . .
√

µx′T1−1 x′T1
. . . x′T−1 Pi

]′ (7)

with Pi being the Cholesky factor of M−1
i = PiP

′
i .
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The posterior (3)

The posterior for the matrix of parameters at lagged variables p(B|A,D,YT )

p(B|A,D,YT ) =
n

∏
i=1

p(bi |D,A,YT )

bi |A,D,YT ∼ N(m∗
i (A),diiM

∗
i ),

(8)

where:

m∗
i (A) =

(
X̃′
i X̃i

)−1(
X̃′
i Ỹi (A)

)
M∗

i =
(

X̃′
i X̃i

)−1
.

(9)
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The posterior (4)

The posterior for the contemporaneous relations matrix, p(A|YT )

Ω̃1 = (T1)−1

 T1

∑
t=1

yty
′
t −

(
T1

∑
t=1

ytx
′
t−1

)(
T1

∑
t=1

xt−1x′t−1

)−1( T1

∑
t=1

xt−1y′t

)
Ω̃2 = (T2)−1

 T

∑
t=T1+1

yty
′
t −

(
T

∑
t=T1+1

ytx
′
t−1

)(
T

∑
t=T1+1

xt−1x′t−1

)−1(
T

∑
t=T1+1

xt−1y′t

)
Ω̃T = (µT1 +T2)−1

(
µT1Ω̃1 +T2Ω̃2

)
(10)

The posterior marginal distribution for A:

p(A|YT ) = kTp(A)
[
det(AΩ̃TA′)

]T ∗ n

∏
i=1

[τi (A)]κi[
τ∗i (A)/T ∗]κ∗

i
, (11)
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