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Crude oil market

Crude oil represent almost 30% of global total energy supply.

It is a global market.

e Large swings in oil prices draw a lot of attention among policymakers,
academics and practitioners.
e Important questions arise:

1. Are price changes driven by demand or supply shocks?
2. What are the elasticities on the crude oil market?



Structural VAR models for the crude oil market

e Large literature on using SVAR models for the global crude oil market
e.g. Kilian and Zhou, 2023

o Key parameter is the short-run price elasticity of oil supply, which determines
the importance of oil demand and oil supply shocks for the real price of oil
Kilian and Murphy, 2012; Herrera and Rangaraju, 2020

e Baumeister and Hamilton (2019) is a recent alternative approach to the
workhorse model by Kilian and Murphy (2014).

e Recently, it has been extensively criticized by Kilian (2022a,b).



Debate on how to model crude oil market
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About this article

We add to the debate on modelling global crude oil market with SVAR.
e \We correct the demand equation in the BH approach and run the model.

e \We use both the original and updated sample.

We document how these changes affect key oil market elasticities.

e The price elasticity of oil supply drops markedly and is closer to zero.

Demand shocks are the key driver of the real price of oil.



Baumeister and Hamilton (2019) model
for the global crude oil market



The SVAR model

Structural VAR model:

Ay, = Bx;_1+us, us ~ N(0,D)

A is an n x n matrix describing contemporaneous structural relations
x;__l = (y,tfl,...,y/t_m,l)’ is a k x 1 vector, with k =mn+1

B is an n x k matrix of parameters at lagged variables

u¢ is an n x 1 vector of uncorrelated structural shocks

D = diag(di1,...,dnn) is a diagonal matrix of size nx n.



The specification of the SVAR

The structure of contemporaneous relations in terms of observables:

Aqt = agpApt +byxt—1+ U}S

Ayr = aypAp; +boxe 1 +uy

Agy = Bgy Ayt + BapApt +x A0+ b,3xt—1 + U? —x te

X 0 = Y1AGe + Y3 Ape +byxe_1 +ul + 1 e
where: Aqy = log(Qt/Qt—1), Ay = log(Yt/Yi—1), Apr = log(Pt/P¢—1) and
D = Ale/ Qs 1.
Additive Gaussian measurement error for inventories:

Nip = yAif +ep == Aif = x i —x le



Accounting identity

e Following Kilian and Murphy (2014): C; = Q¢ — Alf

BH assumes that oil consumption equals to: Ac; ~ Ag; — Aif

e This is a mistake, as pointed out by Kilian (2022a,b).

We derive that:

CG—C1  AG  A(Q:—Al) - A(Qr — AI)

AC = = = =
‘ Ci1 Ci1 Ci1 Q-1
AQr A% 5.
= — = Aqg: — A%i}.
Q-1 Qr1 ‘ t

While BH have used:
AQ Al _Q-Qr1-Al _

Q1 Qi1 Qi-1
Ct - Qt—l Ct - Ct—l

= ~ = AC
QRr-1 Ci 1 ‘




The approximation erro
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Notes: The figure presents the growth rate in oil consumption (Ac;, black line) across the updated sample, where
consumption is approximated as C; = Q¢ —x 1Al and y = 0.603, as in BH. The series is compared to the BH
proxy, Aqt —x’lAl} (upper left corner, red line), and our proxy, Aq; —x’lAz it (upper right corner, red line), with
p denoting the Pearson correlation coefficient. The distribution of differences between the series is presented in the

bottom row.



Correcting the model

To correct this error, we substitute Aj; in model with A2j;. New equations are:

Agy = aquPt + b/1Xt71 + Uts
Ayt = oypApt + b/zxt—l + UtY
Agr = By Ay: + BapApt +X71A2it + b/3Xt—1 + UtD - Xﬁlet

X A% = yiAge + w3 Ape + bilxt—l +ul 7 te

e Re-estimate the SVAR keeping all remaining settings unchanged.
e Use two samples: 01.1958-06.2024 and 01.1958-12.2016.
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Prior for matrix A:

Ogp ~ t5 (0.1,0.2)

ayp ~ t; (—0.05,0.10)

Bap ~ t5 (—0.1,0.2)

By ~ 5 (0.7.02)

y1 ~ t3(0,0.5)

y3 ~ 13(0,0.5)
X ~ Beta(0.6,0.009)
hy ~ At3(0.6,1.6,2)
hy ~ t3(0.8,0.2)

Prior for other parameters:

e 7; and k; set in line with the standard Bayesian VAR literature.
e standard hyperparameters (A9 = 0.5, 11 =1, A3 = 100).

e Bayesian estimation: M* draws after M burn-in (M = M* = 1e6).
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Prior and posterior distribution

Reported statistic Ogp Qyp Byp Bap x 7% 733 p hy hy

" Type tt t~ tt t~ Beta t t Beta At t

N g Location  0.100 -0.050 0.700 -0.100 0.600 0.000 0.000  0.25*y  0.600  0.800
'5_9. g Scale 0.200 0.100 0.200 0.200  0.009  0.500 0.500  0.12%y  1.600 0.200
= D.o.f.  3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000
Skew ~ — — — — — — — — 2000 —

© 5% 0.072 -0.008 0.434 -0.622 0.438 -0.411 -0.090 0.061 0.491 0.988
T 50% 0.145 -0.002 0.724 -0.355 0.603 -0.138 -0.035 0.145 0.631 0.997
«@ 95%  0.303 0.000 1.092 -0.181 0.754  0.032 0.031 0.241 0.880  1.000
© 5% 0.064 -0.008 0429 -0.627 0.437 -0.446 -0.120 0.067 0.474  0.986

N i 50% 0.132 -0.002 0.728 -0.353 0.604 -0.091 -0.047 0.161 0.629 0.997
-% & 95%  0.303 0.000 1.122  -0.166  0.756 0.092 0.029 0.269 0.925  1.000
E < 5% 0.032 -0.007 0596 -0.715 0.446 -0.193 -0.071 0.060 0.460 0.987
< 50% 0.071 -0.002 0.876 -0.450 0.608 -0.047 -0.023 0.131 0.580 0.998
@ 95%  0.126 0.000 1421 -0.295 0.756 0.063 0.030 0.214 0.773  1.000
< 5% 0.029 -0.007 0.595 -0.670 0.439 -0.152 -0.088 0.068 0.444  0.987
3 50% 0.065 -0.002 0.871 -0.435 0.604 0.011 -0.032 0.148 0.569 0.997
& 95% 0.119 0.000 1.376 -0.280 0.753  0.123 0.025 0.237 0.747  1.000

Notes: In the table t denotes a Student t distribution and At denotes an asymmetric Student t distribution. Signs 4 and — indicate that
the distribution is truncated to be either positive or negative, respectively. D.o.f stands for degrees of freedom. BH16 and BH24 denote
results for the original BH model estimated with data ending in December 2016 and in June 2024, respectively. RS16 and RS24 show the
results after substituting equations 3 and 4 of the model on respective samples.
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Impulse response functions:

BH16 (red) vs RS24 (blue)

Flow supply. Flow demand Oil proference
shock shock ‘shock

Storage demand
‘shock

Ol production

Economic actvity

Real ol price

Stocks

Note: The areas denotes the 68 and 95 percent posterior credible sets.
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IRF — with similar response to oil prices:

BH16 (red) vs RS24 (blue)

Ol preference Storage demand
‘shock ‘shock

Ol production

Economic actvity

Real ol price

Notes: The areas denotes the 68 and 95 percent posterior credible sets. For BH16 responses to one standard
deviation shocks. For RS24 the responses are normalized so that the initial response of the real price of oil to the 14
chocks ic the same a< in RH16



Forecast Error Variance Decomposition

LlS Uy UD UI US Uy UD UI
BH16 RS16
h=1 273 08 652 5.8 234 08 67.6 72
[10.0-63.4]  [0.2-1.9] [30.3-85.4]  [3.1-8.4] [7.7-641]  [0.2-1.9] [28.2-87.2]  [3.6-10.9]
h=6 27.9 3.4 62.4 5.4 243 3.4 64.6 6.7
[11.0-615]  [1.5-6.4] [20.9-822]  [3.0-7.9] [8.9-62.2]  [1.5-6.4] [27.7-84.1]  [3.4-10.0]
h=12 28.0 38 61.8 55 24.6 38 63.9 6.6
[11.4-606]  [1.8-6.8] [30.1-81.4]  [3.1-8.0] [0.4-61.6]  [1.8-6.9] [27.9-832]  [3.4-9.9]
h=18 27.9 3.9 61.7 5.6 24.6 3.9 63.7 6.7
[11.4-603]  [1.9-7.0] [30.2-81.1]  [3.1-8.2] [9561.3]  [1.9-7.0] [27.9-829]  [3.4-10.0]
BH24 RS24
h=1 143 18 783 53 122 18 792 6.4
[6.2-20.8]  [0.8-3.7] [60.9-88.9]  [2.8-8.1] [5227.2]  [0.9-3.7] [61.7-89.4]  [3.4-10.1]
h=6 15.9 3.4 75.6 4.7 14.1 3.4 76.4 57
[7.6-31.0]  [1.9-5.8] [58.7-86.3]  [2.6-7.2] [6.7-28.8]  [1.9-5.7] [59.2-86.8]  [3.1-9.0]
h=12 16.1 41 74.6 48 14.4 4.0 75.4 58
[7.9-30.9]  [2.4-6.5] [58.1-853]  [2.7-7.4] [7.1-28.9]  [2.4-6.4] [58.5-85.8]  [3.2-9.0]
h=18 16.2 42 74.3 4.9 14.5 4.2 75.1 5.8
[8.0-30.8]  [2.6-6.8] [57.9-84.9]  [2.7-7.4] [7.2-28.8]  [256.7] [58.3-855]  [3.2-9.1]

Notes: In the table us, uY, uP and ul denote posterior median contributions of flow supply, flow demand, oil preference and storage
demand shocks (in %) to the overall variability in the real price of oil along with the 5th and 95th percentile of the posterior distribution
(in square brackets). BH16 and BH24 denote results for the original BH model estimated with data ending in December 2016 and in June
2024, respectively. RS16 and RS24 show the results after substituting equations 3 and 4 of the model on respective samples.
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Historical decomposition of oil prices (RS24 model)

—o <"
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Notes: Black solid line represents the logarithmic annual rate of change in the real oil price. In the figure us, uY‘ uD and ul denote the

posterior mean contribution of the flow supply, flow demand, oil preference and storage demand shocks, respectively.
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Main takeaways

1. We studied how the estimates of the global oil market SVAR model proposed by
Baumeister and Hamilton (2019) are affected by an error in the specification of
their demand equation. We also checked whether the estimates are sensitive to
the inflow of recent data.

2. We show that both changes reduce the estimate of the short-run price elasticity
of oil supply.

3. It leads to a substantial decrease in the contribution of oil suppy shocks to real oil
price.

4. Our results corroborate the substance of conclusions in Kilian and Murphy (2014),
Zhou (2020) or Inoue and Kilian (2022).

5. Results from Baumeister and Hamilton (2019) are not robust to reasonable changes
in specifications as shown also by Herrera and Rangaraju (2020) or Braun (2023).
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Thank you for attention!




We decompose the prior:

b(A,B,D) = p(BJA,D) x p(D|A) x p(A). (1)
Prior for the covariance matrix p(D|A)

p(D|A) = Hp dilA)
(2)
d; A ~ T (i, 7i(A)),
Prior for the matrix of parameters at lagged variables p(B|A,D)

n
=1 (3)
b;|A,D ~ N(m;,d;M;),

Prior for the contemporaneous relations matrix p(A) freely chosen.
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The posterior (1)

The decomposition of the posterior:
p(A,B,D|Y7) = p(BIA,D,Y7) x p(DIA,Y 1) x p(A[Y 7). (4)

The posterior for the covariance matrix p(D|A,Y 1)

p(D‘AYT) = Hp(dii|A7YT)
i=1 (5)
d; A Y 1~ T(xF, 77 (A)),
where:
K =Kk +(uT1+T2)/2
7 (A) =5i(A)+ & (A)
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The posterior (2)

LH(A) = (\?;(A)\?,-(A)) - (\?;(A)i,) ()”(55(,.)71 ()”(j.?f(A)) is the sum of

squared residuals from regression of ?,-(A) on )N(,- defined as:

Y i
(I_:_(I('?)l = [\/ﬁylla/ \/ﬁylrla/ lel+1a,~ . Yra m;,p’,]
X
(7)
X !
X, = [\/ﬁxo /T S A Pi]
(THk)xk

with P; being the Cholesky factor of MITI =P,P..
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The posterior (3)

The posterior for the matrix of parameters at lagged variables p(B|A,D,Y 1)

p(BIA,D,Y 1) = [ p(biD,A, Y1)
i=1 (8)

b;|A,D,Y 7 ~ N(mi(A),d;M?)

where:
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The posterior (4)

The posterior for the contemporaneous relations matrix, p(A[Y 1)

_ T T T -1/
Q=(T) " | Y yeyi— (Z th/t1) (Z xf1X§1> <Z xtly/t>
=1 =1 =1 =1

B T T T -1 T
Q=(T2) " Y oy Y vy Y xeaxig Y xeay:
t=T1+1 t=T1+1 t=T1+1 t=T1+1

Qr=(uT1+To)? (ﬂ T19: + T2§2)

The posterior marginal distribution for A:

p(AlY 1) = krp(A) {det(AﬁTA’)] T ﬁ G A

. 11
i=1 [t (A)/T*]" (11)
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