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Quarter-hour continuous trading

Continuous trading for quarter-hourly deliveries:
▶ open from 16:00 on the day prior to the delivery,
▶ active up to 5 minutes before the delivery.
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Price trajectories
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Our goal

Train the model on data available in expanding windows

2019-01-02 - 2019-12-31, . . . ,
2019-01-02 - 2020-12-30

to predict 5min VWAPs between 185 and 30min before
the delivery in 2020.
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Support Vector Regression (SVR)

The function used to predict new values for a feature
vector x is given by a following formula

f (x) =
N∑
i=1

(−αi + α∗i )K (x i , x) + b.
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Corrected Support Vector Regression (cSVR)

The correction kernel is based on an alternative forecast

K (x i , x j) = exp (−l ∥x i − x j∥) exp
(
−g ∥ŷi − ŷj∥2

)
,

This idea is drawn from observations on NTKs (Neural
Tangent Kernels) and corresponding neural networks’
performance S. Chen et al. 2020.
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corrected Support Vector Regression (cSVR)

We showed that such a correction outperforms LASSO
and RF in the point forecasting task on the same dataset
Puć et al. 2024.
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Extension to path forecasting

Following Tschora et al. 2022, we adapt cSVR to the
multivariate case in two ways:

1. ChainSVR,

2. MultiSVR.
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cSVR extension to probabilistic forecasting
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cSVR extension to probabilistic forecasting

We use
δ̂ = ∆̂−∆

to describe the realized change in the forecasting error
of the day-ahead forecast.

In the forecasting step, we replace δ̂ with historical
scenarios (solar, wind, and consumption - all from
one day), creating the probabilistic forecasts.

11



cSVR extension to probabilistic forecasting

We use
δ̂ = ∆̂−∆

to describe the realized change in the forecasting error
of the day-ahead forecast.

In the forecasting step, we replace δ̂ with historical
scenarios (solar, wind, and consumption - all from
one day), creating the probabilistic forecasts.

12



Choosing from historical scenarios

How to choose daily scenarios from history?

1. take them all (suboptimal?),
2. density-based clustering (HDBSCAN),

3. Support Vectors Sorting (SVS),
4. Fast Forward Sorting, Heitsch et al. 2003.
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Support Vectors Sorting

▶ Using the absolute values of dual coefficients
−αi + α∗i to sort the historical scenarios.

▶ Available after fitting the cSVR and used in the
decision function

f (x) =
N∑
i=1

(−αi + α∗i )K (x i , x) + b.
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Stopping the iteration over scenarios?

Given two probability mass functions u and v , the first
Wasserstein distance using the Euclidean norm is

l1(u, v) = inf
π∈Γ(u,v)

∫
∥x − y∥2 dπ(x , y),

where:
▶ Γ(u, v) - set of joint distributions on Rn × Rn with
marginals u and v ,

▶ u(x) - probability mass at position x under u,
▶ v(x) - probability mass at position x under v .
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Pinball loss averaged over deliveries
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Accuracy measures averaged over deliveries

measure model setting model value
MAE — näıve 4.905
MAE weather scenarios Multi cSVR 4.855
MAE weather scenarios, SVS Multi cSVR 4.860
MAE historical simulation, SVS Multi cSVR 4.938
MAE GAMLSS — 6.601
CRPS — näıve 1.917
CRPS historical simulation Multi cSVR 2.015
CRPS weather scenarios, SVS Multi cSVR 2.207
CRPS historical simulation, SVS Multi cSVR 1.959
CRPS GAMLSS — 5.428
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Trading strategies
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Weighted median

Given
▶ ordered values x1, . . . , xn,
▶ positive weights w1, . . . ,wn (normalized so∑

i wi = 1),

is an xk such that

k−1∑
i=1

wi ¬ 12 and
n∑

i=k+1

wi ¬ 12 .
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Weights Specification

Generalized normal distribution weighting

K (x) = exp

−MAEx

 T ′∑
t=1

wt |xt − yt |2


p
2


where x is a path scenario and wt are the exponential
decay weights

wt =
exp
(
−λ(T ′ − t)

)
T ′∑
s=1

exp
(
−λ(T ′ − s)

) .

Note the similarity to the Nadaraya-Watson estimator,
used, e.g., in Morel et al. 2024.
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Trading on the weighted median
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Trading strategy simulation

Hyperparameters p, λ and profit threshold are
optimized on the last 168 days of 2019.

We also simulate the risk-seeking (sell at the max of
upper band) band-based strategy, J. Chen et al. 2025,

where the SCP level is also optimized in the
calibration window.
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Economic evaluation: trading with 1MW

strategy model setting model profit [kEUR] σd profit/σd
SELLER

baseline — näıve 1127 27.64 40754.23
baseline historical scenarios, SVS Multi cSVR 1135 27.07 41939.54
dynamic — näıve 1186 26.55 44654.84
dynamic historical scenarios, SVS Multi cSVR 1164 26.74 43539.58
bands — näıve 1092 23.59 43438.95
bands historical scenarios Multi cSVR 1114 27.13 41074.24

SPECULATOR
baseline — näıve 46 20.51 2230.16
baseline historical scenarios Multi cSVR 67 18.47 3605.89
dynamic — näıve 48 20.20 2355.19
dynamic historical scenarios Multi cSVR 68 17.38 3914.49

strategy σd profit [kEUR] profit/σd
sell at t = 31 19.09 1123 58835.20
sell at t = 1 16.30 1092 67035.97

buy at 0 sell at 31 12.41 30 2432.27
sell at 0 buy at 31 24.74 -30 —
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Summary

1. Choosing a limited number of trajectories:
▶ makes the forecast easier to interpret,
▶ improves accuracy.

2. Dynamic re-weighting of the trajectories can
improve both risk and profit of trading strategies.
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Forecasting study

1. 96 quarter-hour deliveries,

2. training on expanding windows,

3. generating paths of 31 steps of 5 min intervals,
covering period from 185 to 30 min before
the delivery,

4. 2020 used as a validation window,

5. 66 weather scenario variables from each day; 3
fundamentals, 11 steps, positive and
negative impact,

6. stop adding support vector method and FFS sorted
scenarios when the Wasserstein metric changes by
less than 0.01 and at least 10 scenarios are added.
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Forecasting study

Variables used:

1. RES and demand: forecast, last known actual and
forecast error,

2. day-ahead of DE and all neighbouring countries and
DE intra-day price,

3. all commercial actual and last known
physical exchanges,

4. intraday price elasticity derived from the intra-day
auction curves,

5. last known price differenced with horizons
corresponding to all path steps,

6. last known total volume differenced with horizons
corresponding to all path steps.
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