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Motivation 1-1

Redispatch

A request issued by the transmission system operator (TSO) to
power plans to adjust the real power they input in order to avoid or
eliminate congestion. This method can be applied within or
between control areas. “ (Transnetbw)

O"\/This talk on Quantinar
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Motivation

Relevance

[1 Grid Congestion Dynamics
[ Challenges with Renewables
[] Cost of Redispatch

[ Legislative Adaptation
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Figure 1: Redispatch Process
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Motivation

TSO in Germany
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Motivation

Electricity generation in
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Figure 2: Public net electricity generation in Germany in 2013 (left) and 2023 (right),

Source link
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Motivation 1-5
Redispatch costs evolution
Year 2020 2021 2022 2023 2024
50Hertz 80.23 106.30 325.83 273.30 211.56
Amprion 128.19 33820 896.78 394.07 407.16

TenneT DE  708.75 724.89 1563.60 1748.62 972.58
TransnetBW ~ 20.74 101.51  315.07 184.08 101.04

Table 1: Yearly redispatching costs in million € reported by each TSO. Source:
ENTSO-E
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Motivation 1-6

State of the Art

(] Staudt et al., 2018

» Predict redispatch occurrence (not load) per power plant in
Germany

» Use multiple machine learning models, from Artificial Neural
network to Random Forest

» Integrate weather features, electricity price and production

[J Girses-Tran, Flamme, and Monti, 2020

» Use RNN-based probabilistic model with parametric and
non-parametric implementations to forecast 40h-ahead future
congestion quantiles

» Focus on a single power plant in Southern Sweden

» Benchmark with naive benchmarks

Al for Redispatch 2.0 forecasting Q



Motivation 1-7
State of the Art

(1 Billault-Chaumartin, Eising, and Motte-Cortés, 2020

» Literature overview of papers regarding redispatch modeling in
Germany

» use hourly wind and PV feed-in, load and redispatch measures
data between 2015 and 2019 to model redispatch direction
(Up and Down) with Fast Fourier transformation

L] Titz, Putz, and Witthaut, 2024

» Model for the hourly volume of redispatch and countertrade
(Gradient Boosted Trees and SHAPIey values) in the whole
German transmission grid

» Wind power generation in northern Germany emerged as the
main driver, along with hydro run-of-river and neighboring
country flows
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Motivation 1-8

Redispatch volume in Germany with Gradient
Boosted Trees
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Figure 3: Redispatch volume in Germany from power grid features, Titz et al. 2024
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Motivation 1-9

Challenges

(] Unbalanced supply and demand in Germany
(] Impacts distribution grid, most importantly north - south

» Higher concentration on renewable energies in Northern
Germany because of wind farms
» Electricity demand in the South is higher

= leads to congestions
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Motivation 1-10

Objectives

[] Develop a data-driven 24-hours ahead forecast of redispatch
measures for each German TSO
(] Identify drivers of congestion via feature importance tools
» Leverage state-of-the-art machine learning models, such as
Temporal Fusion Transformers (TFT) and N-BEATS, to
analyze key factors influencing redispatch needs.
(] Evaluate the economic impact of redispatch forecasting
» Assess cost implications, including potential savings from
optimized redispatch operations and reduced dependency on
conventional balancing measures.
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Methodology 2-1

Model selection

[] Targets for each TSO:

» Total load of redispatch - up and down with a single model
(] ML Algorithms

> Regression for day-ahead (24-hour) forecasting

1. TFT (Temporal Fusion Transformers for Interpretable
Multi-Horizon Time Series Forecasting, Bryan Lim et al.,
2021)

2. N-BEATSx (Neural Basis Expansion Analysis Time Series with
exogenous variables, Olivares et al., 2023)

3. N-HiTS (Neural Hierarchical Interpolation for Time Series
Forecasting, Chalu et al., 2022)

4. Naive, ARIMA as benchmarks

Al for Redispatch 2.0 forecasting Q



Methodology 2-2

Training & Inference

(] Regression for up and down load

(] Compare results for many regression algorithms under
different conditions
» Input size
Scaling
Hyperparameters
Features

vvyy
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Methodology 2-3

Training & Inference
(] N-BEATSx
» Simplicity and effectiveness compared to other deep learning
models like RNNs or LSTMs on more irregular time series
through repeated decomposition of the signal
> Supports covariates (exogenous variables)
[1 N-HiTS
» It builds upon the strengths of previous models like N-BEATS
but introduces innovative features such as hierarchical pooling
and interpolation to improve performance, efficiency, and
interpretability
» Suitable for long-horizon predictions
L1 TFT
» An advanced deep learning model specifically designed for
multi-horizon time series forecasting
» Ability to capture complex temporal patterns while providing
interpretability through attention and variable selection

Al for Redispatch 2.0 forecasting Q




Methodology 2-4

Training & Inference - Benchmarks

Naive benchmark: Use last available time point: ¥ = y;_24

ARIMA:

(] Econometric approach widely employed by researchers and
practitioners in fields such as energy and finance
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Methodology 2-5

Target processing

[] 60% of redispatch interventions are performed by all 4 TSOs,
and we split them equally
[] We exclude interventions related to:

» Test runs
» Countertrading with Denmark and Norway bidding zones
» Interventions with foreign TSOs

Al for Redispatch 2.0 forecasting Q



Methodology 2-6

Target processing

[] Input: total intervention length per event

(] Split into equal 1h intervals, sum by hour = hourly redispatch
per TSO

[J Final aggregation levels:

» Hour interval
» TSO
» Direction: up / down

Al for Redispatch 2.0 forecasting *



Data 3-1

Features data

70 features
[ Prices (USD)
» Brent oil, natural gas, carbon emissions futures, CO2
certificates (daily)
» day-ahead electricity DE, CH, CZ, NL, PL, AU (hourly)
(] Weather
»> Average air temperature, wind velocity per TSO (hourly)
» Min, max, average wind velocity and air temperature per
Bundesland (hourly)
[] Date
» weekday, weekend, holidays, hour/day/month
[J Electricity consumption and production forecasts (hourly)
» electricity production from renewable and conventional sources
» grid and residual load

Al for Redispatch 2.0 forecasting Q



Data

3-2

Hourly Redispatch average load
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Figure 4: Hourly mean load for TenneT, 50Hertz, Amprion and TransnetBW
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Data

Weekly Redispatch total load

Weekly mean load up

Weekly mean load down
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Figure 5: Weekly mean load for TenneT, 50Hertz, Amprion and TransnetB\W
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Data 3-4

Redispatch patterns

[] Usually, a sufficiently long input size is chosen to account for
these seasonality or other patterns (e.g., Lim et al., 2021).

(] As per Figure 4, 5 there are strong indications of hourly and
more subtle for weekly patterns in the data.

(] In our hyperparameter optimization, a 24-hour input size is
chosen as the best for all models, even though we went as far
as 1 week.

Al for Redispatch 2.0 forecasting Q



Data 3-5

Affected plants

Figure 6: Affected units, Heat map based on total congestion load. Heat map video
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Modeling 4-1

Data split

Split Time Period n
Train 2020-01-01 to 2024-01-31 35,808
Validation 2024-02-01 to 2024-03-31 1,440
Test 2024-04-01 to 2025-01-31 7,344

Table 2: Data split for Regression training

] Rolling window training:
» Training window: 49 months, validation window: 2 months,
test window: 1 month
» Total: 11 windows
» Windows slide 1 month at a time

Al for Redispatch 2.0 forecasting Q



Modeling 4-2

Training loss

(] Early stopping on the validation dataset loss
[] Mean Absolute Error (MAE) as loss

] Higher load is more unpredictable and models struggle more in
this department

Al for Redispatch 2.0 forecasting Q



Modeling 4-3

Training loss
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Figure 7: Redispatch load in January 2025 for TransnetBW and TenneT DE. MSE is
proxied by 5-day rolling mean (solid) and MAE by 5-day rolling median (dashed) g
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Empirical results 5-1

Regression performance

ARIMA  Naive benchmark N-BEATSx NHITS TFT

TSO metric  Direction

Huber down 0.1837 0.1152 0.0579 0.0541 0.0562
50Hertz Y up 0.1852 0.1211 0.061 0.0593 0.0613
R2 down -1.35 -0.26 0.57 0.57 0.52

up 127 0.27 0.59 0.58 05
Huber down 0.1803 0.1099 0.0556 0.0514 0.0568
Amprion up 0.1769 0.1214 0.0588 0.0557 0.0593
P R down  -1.45 025 0.58 06 053

up -1.23 -0.28 0.61 0.62 0.55

Huber down 0.1241 0.115 0.0582 0.0571  0.057
TenneT DE up 0.1892 0.1358 0.0637 0.0626  0.0602
R2 down -0.23 -0.3 0.49 0.49 0.5

up 117 0.4 0.56 055  0.58

Huber down 0.2028 0.1128 0.0557 0.0533 0.0631
TransnetBW up 0.1914 0.1202 0.0569 0.0541 0.0645
R down -1.67 -0.21 0.61 0.61 0.45

up -1.3 -0.27 0.62 0.63 0.4%

Al for Redispatch 2.0 forecasting
Table 3: Prediction metrics, 24-hour forecast horizon



Empirical results 5-2

Regression performance
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Figure 8: Redispatch load out-of-sample prediction in January 2025 for TransnetB\W,
with N-BEATSx, NHIiTS predictions, and TenneT DE, with TFT, predictions.
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Empirical results

SHAP GradientExplainer — N-HiTS
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Figure 9: SHAP values from shap.GradientExplainer: signed, scaled feature
contributions.
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Empirical results

5-4

SHAP GradientExplainer — TFT
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Figure 10: SHAP values from shap.GradientExplainer: signed, scaled feature

contributions.
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Empirical results

SHAP GradientExplainer — N-BEATSx
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Figure 11: SHAP values from shap.GradientExplainer: signed, scaled feature
contributions.
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Feature importance 6-1

Feature importance

[J Our features improve results by an average of 25 - 30% for
MAE, RMSE and 50% for R?, as can be seen below.

nbeatsx nhits tft
metric mae r2_score rmse mae r2_score rmse mae r2_score rmse
down 0.29 -0.66 0.27 0.28 -0.51 0.23 0.25 -0.52 0.20
up 0.31 -0.58 0.35 0.35 -0.58 0.34 0.32 -0.50 0.26

Table 4: % of metric improvement when training with covariates vs without, TenneT
DE, 24-hour forecast horizon
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Feature importance 6-2

How much can we save?

[] We want to test how prior knowledge of the redispatched load
can impact costs

(] A redispatch will occur regardless, but we can assume TSOs
get to prepare and use cheaper energy sources

[] We consider the allocation proportion Wf,;ig for source s used
currently (which can be obtained from historical data)

[J We propose a more efficient allocation portfolio wf's” for
correctly forecasted load

Al for Redispatch 2.0 forecasting Q



Feature importance 6-3

How much can we save?

(] Goal: impact of prior knowledge of redispatched load on costs

[] Redispatch inevitable = TSOs prepared, cheaper energy
sources available

[J Baseline: historical allocation shares w;s® for source s

[J Proposal: prepared allocation w{" for correctly forecasted
load

Al for Redispatch 2.0 forecasting Q



Feature importance 6-4

How much can we save?

TenneT DE 50Hertz  Amprion TransnetBW Overall

Model Direction
ARIMA down 1825.8184  809.0985  769.1791 768.2001  4172.2962
up 1178.2924  898.0889  910.2123 898.7217  3885.3153
Naive down 1823.3757  806.9543  768.3125 763.7659  4162.4084
up 1175.5876  895.7827  909.2220 893.7985  3874.3909
N-BEATSx down 1794.3270  791.1348  752.5827 747.1530  4085.1975
up 1145.2180 879.7501  893.6025 877.4403  3796.0109
NHITS down 1793.0305 789.8338 751.5551 746.5174 4080.9367

up 1144.6920 878.5729 892.6505 876.8414 3792.7569
down 1793.9658 789.1730  752.3021 746.8719  4082.3127

TFT up 1144.8478 877.5082  893.2411 877.5763  3793.1733
Benchmare  40WM 17985516  791.0386  751.0573 7481743 4089.7218
enc up 1148.1821  879.9662  893.8082 879.2032  3801.1597

Table 5: Economic implications in million €, out-of-sample period, 24-hour forecast
horizon; source loads are taken proportional to historical data

Al for Redispatch 2.0 forecasting Q




Feature importance 6-5

How much can we save? - Conclusions

[J In this setup, our top models are more efficient that the actual
operation, with NHIiTS reaching a 0.21% reduction in total
costs, equivalent to almost €9 million

Al for Redispatch 2.0 forecasting Q



Feature importance

6-6

Attention analysis
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Figure 12: Average TFT daily attention across all horizons, out-of-sample, 24-hour
forecast horizon. X axis represents the time horizon, negative values are model inputs.
The dashed line indicates where TFT starts predicting.
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Feature importance 6-7

Attention analysis - Conclusions

(] TFT pays less and less attention when it is about to forecast.
It is more "interested" in covariates immediately before the
prediction interval.

(] Such a behaviour could indicate that it does not find any
good patterns and it tries to emulate the benchmark strategy
(use latest data points)

[] We confirm the descending attention with dwindling average
performance on the forecast horizon - first 7 hours are much
better predicted than the last

Al for Redispatch 2.0 forecasting Q



Conclusion and Outlook 7-1

Conclusions

[] Redispatch data presents some patterns that can be
investigated by Machine Learning models

[J NHITS and TFT outperform other econometric and
benchmarks to forecast day-ahead redispatch load

[] With the right over-prediction weight (not defined in the
German law), we can achieve lower redispatch costs

(] Main drivers:

» negative: Production forecast others, DA price BE
» positive: DA Price DK, onshore wind forecast

Al for Redispatch 2.0 forecasting Q



Conclusion and Outlook 7-2

Next steps

[] Refine per-source loads using available data in the economic
cost calculations

[] Better account of the over-prediction weight
[] Feature importance for NHITS/NBEATSx

Al for Redispatch 2.0 forecasting Q



Appendix 8-1
N-BEATS Description

[ Introduced in Oreshkin et al., 2020

(-] Black-box or interpretable architecture

(] Supports transfer learning

[J Decomposes signal into backcast (history) and forecast
(prediction)

(] Two main building blocks:

» Blocks: capture specific
information using
Fully-Connected (FC)
layers and a learnable
linear projection

» Stacks: a collection of
blocks

Al for Redispatch 2.0 forecasting
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Appendix

NBEATSx Model Architecture

hs,b = MLPs,b (Yback,s,b—la Xs,b—l)
gback,s,b = I—inearback (hs,b)
efor,s,b = Linearfo, (hs,b)

Basis Expansion:

yback;,b = Vback,s,beback,s,b
}I}for,s,b = Vfor,s,befor,s,b

Al for Redispatch 2.0 forecasting
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Appendix 8-3

NBEATSx Model Architecture

Stack and Residual Update:

Yback,s,b+1 = Yback,s,b — yback,s,b
B

yfor,s = Z }I}for,s,b
b=1

where:
) Yback,s,b is the backcasted time series input.
[ Xs,b represents the exogenous variables used in the block.
[J hsp is the hidden representation in block b of stack s.
[ Opack,s,p and Osor s, are the expansion coefficients.
() Vback,s,b and Vo s p are the learned basis functions.

Al for Redispatch 2.0 forecasting Q



Appendix

NBEATSx

Model Input Stack Input Block Input
Backcast Period Forecast Period (y"k X) (yhsk X, p) (yhack X))
2 7 r
2 . — Stack 1
2 - } sack
5 Stack2 =~
8- 1 ......
§, . - Stack S
& - 4
°

¥ sb

lG\Obal Forecast tack Residual
(model oulpul) (to next stack)
yheek

Figure 13: NBEATS with exogenous variables, Olivares et al. 2024
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Appendix 8-5
N-HiTS Description

(] Introduced in Challu et al., 2022
(] An evolution of N-BEATS by:
» Included kernel pooling at each block’s entry point
» Regularized basis function forms by hierarchical interpolation
and multi-rate data sampling

[J Unique parameters from N-BEATS:

........

» Pooling: control how pooling is I =m = =
done (max, mean, etc.), and how I ] mm = TE S
much the inputs are shrinked [ m =

» Interpolation type: three were
proposed in the paper (linear,
cubic, and nearest neighbor)
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Appendix 8-6

NHITS Architecture

NHITS model consists of multiple blocks using hierarchical
interpolation and multi-rate sampling:

he = MLP; (MaxPool (y:_1.¢.¢, ke))
Gf = Linear¢(hy)

0, = Linearp(hy)

Hierarchical Interpolation:

Jre=g(r,0f), Vre{t+1,.. t+H}
Vro=g(1,08), Vre{t—L, ..t}

Al for Redispatch 2.0 forecasting Q



Appendix 8-7

NHITS Architecture

Final Forecast Assembly:

L
VertitoH = Y Jer1itrHye
=1

Ye—Litf+1 = Yi—L:itf — )N/t—L:t,é

where y;:_;.+ ¢ is the input time series segment with lagged
observations, k; is the kernel size for multi-rate sampling, hy is the
hidden representation in block £. 6% and ¢} are the forward and
backward interpolation coefficients, g(7,0%) is the hierarchical
interpolation function mapping latent features to future
predictions, Viy1.t4+4 is the final assembled forecast by summing
the block-wise outputs.
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Appendix

NHITS Model lllustration

8-8

Model Input Stack Input Block Input
Vi Vit Vit
. — |
ol Clzx il MaxPool
B - T MLP Stack
o - Block 2 ; y
@ = 3 MLP  MLP
&, s s
L N\ o ! !
ey 0 ] a’/ elb
| |
) Block B -
-k o =
| |
) 1% { 1
Global Forecast Stack Residual Forecast  Backeast
(model output) (to next stack) Yevwne  Verae

Suvraent Yi-tas

Figure 14: NHITS model with multi-rate input sampling and hierarchical interpolation.
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Appendix

TFT Description

[J Introduced in Lim et al., 2021

5) n4r(0.9)

) g

Quantile Forecasts {_ 9+1(0-1) G41(0:3) 9141(0.9) et G

Dense Dense

Temporal Fusion Decoder

Position-wise
Feed-forward

Temporal
Self-Attention

Static
Enrichment

LSTM

LSTM
Decoder

Decoder

LSTM
Encoder

Encoder

Variable
Selection

Variable
Selection

Variable

Variable Variable
Selection

Selection Selection
s 1 t o oy
Static Xt—k Xt : Ct+1 : It+7—/,mu-,
‘Known Future Inputs

Metadata Past Inputs

Al for Redispatch 2.0 forecasting




Appendix 8-10

TFT Model Architecture
Mathematical Formulation:

he = LSTM (ye—r.e, Xe—1:¢)
0:"° = VariableSelection(X})
gdec = MultiHeadAttention(Q, K, V)

Self-Attention Mechanism:

-
A(Q, K) = Softmax (Q\g )

H
H =3 AW, kwMyvw)
h=1
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Appendix 8-11

TFT Model Architecture

Final Forecasting Step:
B

Vtr1it+H = Z }A/t+1:t+H,b
b=1

where:
(] y;_1.+ represents the past observations.
[ X;_.+ contains past and future covariates.
(1 hy is the hidden state representation.
] 6" and 695 are feature selection weights.
[J A(Q, K) computes the attention scores.
[1 H is the multi-head attention output.
L) $¥441.¢44 is the final forecast.
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Appendix 8-12

Metric Definition

[J Our metric is defined as:

COSt{?srecaSt = min(yt, 1) - Pts’ + max(y: — §+,0) - Pong

Correct prediction Under prediction

max(§, — y¢,0) - PLg’

Over prediction

where cf“" are yearly average curtailment costs per resource
are available on Netztransparenz, and

PreP — \yPrep . ceur or/g orlg cur
Pis" =wis ¢y, Py Gl
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Appendix 8-13

Metric Definition

] We compare it to the actual
Costactua/ Porlg

[J Results are aggregated per time and source

Co stforecast — Z Z Co St forecast

Costactual Z Z Costactual

» Back to Results
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Appendix 8-14

Metric Limitations

(] One problem is that we cannot correctly compare with our
chosen benchmark because of the over-forecasting part

[] To see this, notice that

min(y, )+ max(y — 9,0) =y

therefore the first two terms alone add up to the initial load;
the third (which occurs often enough in practice)
compensates for the improvement in wP™P,

[] Therefore, we set it so that ARIMA and the naive benchmark
have higher costs that the top ML models (very close to 0)
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Appendix 8-15

Metric Limitations

(] There is no curtailment cost for conventional energy sources
(hard coal, lignite, CHP)

(] We use the renewable average cost as a proxy
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Appendix 8-16

Load per source

[ Existing historical weights/structure of redispatch sources as
Winan = Wagss = (0.58,0.37,0.05), inspired by 2021 - 2023
historical data

[ Proposed weights vector changing grid reserve (the most
expensive source for April - August 2024) and renewables (the
most expensive source for September 2024 - January 2025)
whoon = (0.58,0.42,0), whpot = (0.58,0.32,0.1)
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Appendix

Regression performance metrics

(] Let yt, + the actual and forecasted load at time t.
[} We test prediction accuracy by computing:

Zt()/t - }I>t)2

R?=1- 4
Zt(}’t - )/)2
H, s = 0.5(y: — 915)2 if lye —¥ef <6
- 0-(lyt — y¢] —0.50) otherwise

» Back to Results
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Appendix 8-18

Regression performance metrics

[] R? shows the performance difference in MSE between the
model and a baseline where the mean is used as a predictor

(] Huber loss H compromises MAE and MSE; for small errors, it
uses the latter, else the former

(] § is chosen as the smallest difference in MAE during training
(the error under which MAE alone cannot get)
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