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Probabilistic Forecasting in Modern Power Markets

The Paradigm Shift
The integration of intermittent Renewable Energy Sources (RES) has transformed
electricity prices (Pt) from deterministic trajectories into highly volatile stochastic
processes. Point forecasts E[Pt ] are no longer sufficient for optimal decision-making.

Core Objectives:

• Quantify Uncertainty: Generate Prediction Intervals (PIs) Ĉα
t or full Predictive

Densities f̂ (Pt).
• Risk Management: Essential for derivative pricing, Value-at-Risk (VaR)

calculations, and strategic bidding under non-Gaussian noise.
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Literature Review: Probabilistic EPF Methods

Category Methodology Key Reference

Benchmarks • Historical Simulation (HS): Sample quantiles of past errors.
• Distributional: Gaussian/Student-t/Johnson (SU ) fits.
• Bootstrapping: Resampling residuals.

[Nowotarski and Weron, 2018]

QRA Family • QRA: Quantile reg. on pool of point forecasts.
• Factor QRA (FQRA): PCA on point forecasts first.
• Hybrid QRA: Pre-filtering + Post-processing.
• Smoothing QRA (SQRA): Kernel-based smoothing.

[Liu et al., 2017]
[Maciejowska and Nowotarski, 2016]
[Nowotarski and Weron, 2015]
[Uniejewski, 2025]

Conformal • Inductive CP: Split-conformal calibration.
• Normalized CP (NCP): Adapts width to volatility.
• Adaptive CQR: On-line conformalized NN ensembles.

[Vovk et al., 2005]
[Kath and Ziel, 2021]
[Romano et al., 2019]
[Brusaferri et al., 2025]
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Our Contribution: Agnostic Post-Processing
The Practical Reality
Real-world decision-makers aggregate heterogeneous sources (TSOs, proprietary feeds,
black-box ML).

The Limitation: These sources typically provide only deterministic point forecasts (ŷt),
lacking rigorous uncertainty quantification.

Our Approach: The SPCI Wrapper
We treat any point forecast as a signal and calibrate its residuals dynamically.

• Input: Any stream of point forecasts (model-agnostic).

• Mechanism: Sequential Predictive Conformal Inference (SPCI) adapts to
non-stationarity in the error distribution.

• Output: Reliable, adaptive prediction intervals for operational use.

3
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Classical Approach: Inductive Conformal Prediction (ICP)

Definition (ICP): Let Dcal = {(Xi , Yi)}n
i=1 be a calibration set. Define the

non-conformity score as the absolute residual Ri = |Yi − f̂ (Xi)| [Fontana et al., 2023].

The prediction interval Ĉ1−α(Xn+1) is constructed as:

Ĉ(Xn+1) =
[
f̂ (Xn+1) ± Q̂1−α({Ri}i∈Dcal )

]
(1)

The Limitation (Exchangeability Violation):

• ICP guarantees validity only if data is exchangeable:
P(z1, . . . , zn) = P(zπ(1), . . . , zπ(n)) [Fontana et al., 2023].

• In time series, residuals ϵt exhibit serial correlation (e.g., volatility clustering).
• Result: A static quantile Q̂ fails to adapt to distribution shifts, leading to

coverage violations [Barber et al., 2023, Tibshirani et al., 2019]. 4



Introduction to Probabilistic Forecasting Methodology Case Study EPEX & Results Conclusion

The General Solution: SPCI Framework

The SPCI Hypothesis: Since residuals in time series are not i.i.d., the conditional
distribution of the next residual ϵt is predictable given the filtration of past errors Ft−1
[Xu and Xie, 2023].

Algorithm (Sequential Predictive Conformal Inference):

1. Base Prediction: Train point predictor f̂ to obtain residuals ϵt .
2. Dynamic Quantile Regression: Instead of a static histogram, train a regressor

Q to forecast the residual quantile:

q̂(τ)
t = Q (τ | {ϵt−1, ϵt−2, . . . , ϵt−w }) (2)

3. Interval Construction:

Ĉt(Xt) =
[
f̂ (Xt) + q̂(β∗)

t , f̂ (Xt) + q̂(1−α+β∗)
t

]
(3) 5
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DMQ Model Specification

Let τj∗ be a reference quantile (e.g., the median). The model defines the entire
distribution relative to this anchor using positive distance processes ηj,t

[Catania and Luati, 2023].

The Quantile Process:

qτj
t =


qτj+1

t − ηj,t if τj < τj∗ (Lower Tail)
qτj∗

t if τj = τj∗ (Reference)
qτj−1

t + ηj,t if τj > τj∗ (Upper Tail)
(4)

Advantage 1 (Strict Positivity): The distance is defined as ηj,t = exp(ξj,t). Since
exp(·) > 0, the quantiles cannot cross by construction, solving the primary defect of
classical quantile regression. 6
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Evolution of the Parameters

The dynamics of the reference level and the distances are governed by Generalized
Autoregressive Score (GAS) updates.

Reference Quantile Dynamics:

qτj∗
t = q̄τj∗ (1 − β) + βqτj∗

t−1 + αuτj∗
t−1 (5)

Distance Dynamics:
ξj,t = ξ̄j(1 − ϕ) + ϕξj,t−1 + γuτj

t−1 (6)

• θ = (α, β, ϕ, γ) are static parameters estimated via the Hogg function.
• ut is the forcing variable (the score), which drives the adaptation of the interval

width based on the gradient of the loss. 7
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The Score: Driving Adaptation

The "Hit" Variable: The core signal is the deviation of the realization from the expectation:

zi,t = I(yt ≤ qτi
t ) − τi (7)

The Forcing Variables (The Gradient): Derived from the gradient of the aggregate check
loss:

uτj
t ∝ ∂

∂ξj,t

J∑
k=1

ρτk (yt − qτk
t ) (Updates Distance/Scale) (8)

uτj∗
t ∝ ∂

∂qτj∗
t

J∑
k=1

ρτk (yt − qτk
t ) (Updates Reference/Location) (9)

Advantage 2 (Adaptivity): DMQ uses these gradients to react instantly. A volatility spike
increases uτj

t (expanding widths η), while a structural break in price levels activates uτj∗
t ,

shifting the entire distribution. 8
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Experimental Setup: The German Market

Figure 1: Caption
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Experimental Setup: The ARX Model

The point forecasts are generated using an ARX (AutoRegressive with Exogenous inputs)
structure. For a given time step t and transformation f (·):

pd,h = βh,0+
7∑

i=1

βh,i pd−i,h︸ ︷︷ ︸
Sum: Previous Days

+
G∑

j=1

γh,j pd−1,h−j︸ ︷︷ ︸
Sum: Previous day hours

+
7∑

k=2

δh,kDk︸ ︷︷ ︸
Sum: Week Days

+ βh,LLd,h + βh,W Wd,h + βh,SSd,h︸ ︷︷ ︸
Exogenous: Load, Wind, Solar

+εd,h

(10)

We employ 5 variance stabilizing transformations—the Logistic, Robust Box-Cox (λ = 0.5),
Inverse Hyperbolic Sine (asinh), Mirror Log (mlog, c = 1/3), and N-PIT—as defined in
[Uniejewski et al., 2018] to yield 5 different point forecasts estimated via ridge regression.
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Experimental Setup: Ensemble Strategy

1. Window Calibration (Ridge on V1)
For each VST model (m), we aggregate forecasts from 4 window lengths
(l) [Wang et al., 2023, Hubicka et al., 2019]. Weights wl are learned via
Ridge Regression (minimizing MSE) on recent history V1:

ŷcalib
t,m =

∑
l∈L

wl · ŷt,m,l s.t.
∑

wl = 1, wl ≥ 0

2. VST Stacking (Median Reg. on V2)
We combine the 5 calibrated VST models (m) using Quantile Regression
(τ = 0.5) on a separate window V2. This minimizes Absolute Error
(MAE), making the forecast robust to outliers:

Ŷt =
∑
m∈M

βm · ŷcalib
t,m

(
β

∗ = argmin
β

∑
|ei |

)
Result: A robust point forecast anchoring our probabilistic methods. 11
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Performance Evaluation: Benchmarking
The Naive Benchmark Definition
Let Pd,h be the price on day d at hour h. The naive forecast P̂naive

d,h is defined as:

P̂naive
d,h =

{
Pd−1,h if d ∈ {Tue, Wed, Thu, Fri} (Persistence)
Pd−7,h if d ∈ {Sat, Sun, Mon} (Weekly Lag)

(11)

Metrics Comparison
The table below compares the 5 VST-ARX models and the Stacked ensemble against the Naive benchmark over
the test period (2021–2024).

Method MAE (€/MWh) RMSE (€/MWh) sMAPE (%)

Naive Benchmark 30.43 47.50 56.51

VST: Logistic 10.70 17.81 26.42
VST: Robust Box-Cox 8.52 15.56 23.21
VST: Arcsinh 7.28 11.90 21.23
VST: Mirror Log (mlog) 13.99 76.71 26.68
VST: N-PIT 10.41 17.50 26.34

Stacked Ensemble 8.01 14.92 21.86

Table 1: Error metrics for point forecasts. The Arcsinh transformation yields the lowest error
across all metrics.

12
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Residual Analysis: Autocorrelation Structure
We examine the Partial Autocorrelation Function (PACF) of the model residuals to assess the quality of the
ARX filtration. Ideally, residuals should be white noise (no significant lags).

Key Observations:

• Weekly Seasonality: Significant spikes at lags k = 7, 14, 21 (marked in red) persist in the residuals.
• Implication: The standard ARX model with weekday dummies accounts for the average weekly pattern

but fails to capture the full dynamic weekly cyclicity of prices.

Figure 2: Hour 08:00 Figure 3: Hour 21:00
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Forecast Analysis: First Month Performance

Figure 4: Caption
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Global Forecast Performance Metrics
Method Interval PICP Pinball Average Width Winkler puc (Kupiec)

DMQ 50% 0.510 3.283 10.97 26.26 0.072
70% 0.700 2.592 17.25 34.55 0.932
80% 0.792 2.102 22.09 42.04 0.075
90% 0.894 1.458 30.62 58.33 0.053

QRA 50% 0.480 3.101 9.24 24.81 0.000
70% 0.668 2.468 15.28 32.90 0.000
80% 0.768 2.007 20.28 40.15 0.000
90% 0.879 1.373 28.99 54.94 0.000

SQRA 50% 0.501 3.099 9.68 24.79 0.915
70% 0.686 2.465 15.90 32.87 0.006
80% 0.781 2.001 20.88 40.01 0.000
90% 0.886 1.366 29.82 54.63 0.000

HS 50% 0.494 3.368 10.51 26.94 0.288
70% 0.687 2.680 16.80 35.73 0.006
80% 0.781 2.188 21.64 43.75 0.000
90% 0.882 1.526 30.31 61.03 0.000

CP 50% 0.508 3.388 11.07 27.10 0.143
70% 0.705 2.693 17.62 35.91 0.332
80% 0.796 2.192 22.49 43.83 0.399
90% 0.891 1.519 30.71 60.75 0.006

15



Introduction to Probabilistic Forecasting Methodology Case Study EPEX & Results Conclusion

Visual Results: Adaptivity (Day View)

16
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Conclusion

Methodological Contribution

• Shift: Transitioned from classical Conformal Prediction approach to Sequential
Predictive Conformal Inference (SPCI).

• Implementation: Operationalized SPCI via a rolling DMQ model on stacked residuals.

Key Empirical Results (German Market)

• Performance: Outperforms state-of-the-art benchmarks. Notably, it is the only model
to pass the Kupiec test across all confidence levels (null hypothesis not rejected).

17
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