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Introduction to Probabilistic Forecasting

Probabilistic Forecasting in Modern Power Markets e

The Paradigm Shift

The integration of intermittent Renewable Energy Sources (RES) has transformed
electricity prices (P;) from deterministic trajectories into highly volatile stochastic
processes. Point forecasts E[P;] are no longer sufficient for optimal decision-making.

Core Objectives:
= Quantify Uncertainty: Generate Prediction Intervals (Pls) &ta or full Predictive
Densities 7(P;).

= Risk Management: Essential for derivative pricing, Value-at-Risk (VaR)
calculations, and strategic bidding under non-Gaussian noise. =
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Literature Review: Probabilistic EPF Methods upnvERsITA

Category Methodology Key Reference

Benchmarks o Historical Simulation (HS): Sample quantiles of past errors. [Nowotarski and Weron, 2018]
o Distributional: Gaussian/Student-t/Johnson (Sy)) fits.
e Bootstrapping: Resampling residuals.

[Liu et al., 2017]

) . . [Maciejowska and Nowotarski, 2016]

QRA Family e QRA: Quantile reg. on pool of point forecasts.
e Factor QRA (FQRA): PCA on point forecasts first. [Nowotarski and Weron, 2015]
o Hybrid QRA: Pre-filtering 4 Post-processing. [Uniejewski, 2025]
e Smoothing QRA (SQRA): Kernel-based smoothing.

[Vovk et al., 2005]
[Kath and Ziel, 2021]

Conformal e Inductive CP: Split-conformal calibration.
e Normalized CP (NCP): Adapts width to volatility. [Romano et al., 2019]
e Adaptive CQR: On-line conformalized NN ensembles. [Brusaferri et al., 2025]
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Our Contribution: Agnostic Post-Processing A

Real-world decision-makers aggregate heterogeneous sources (TSOs, proprietary feeds,
black-box ML).

The Limitation: These sources typically provide only deterministic point forecasts (j;),
lacking rigorous uncertainty quantification.



Introduction to Probabilistic Forecasting Literature Review

Our Contribution: Agnostic Post-Processing e

The Practical Reality

Real-world decision-makers aggregate heterogeneous sources (TSOs, proprietary feeds,
black-box ML).

The Limitation: These sources typically provide only deterministic point forecasts (j;),
lacking rigorous uncertainty quantification.

Our Approach: The SPCI Wrapper

We treat any point forecast as a signal and calibrate its residuals dynamically.

= Input: Any stream of point forecasts (model-agnostic).

= Mechanism: Sequential Predictive Conformal Inference (SPCI) adapts to
non-stationarity in the error distribution.

= Qutput: Reliable, adaptive prediction intervals for operational use. 3
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Methodology

Classical Approach: Inductive Conformal Prediction (ICP) it

Definition (ICP): Let Dy = {(Xi, Yi)}7_; be a calibration set. Define the

~

non-conformity score as the absolute residual R; = |Y; — f(X;)| [Fontana et al., 2023].

The prediction interval él—a(Xn+1) is constructed as:

N

EXni1) = [F(Xas1) = Qua({Ri}ien,,) (1)

The Limitation (Exchangeability Violation):

ICP guarantees validity only if data is exchangeable:

P(z1,...,2n) = P(zx),- - - Zr(n)) [Fontana et al., 2023].

In time series, residuals ¢; exhibit serial correlation (e.g., volatility clustering).

Result: A static quantile Q fails to adapt to distribution shifts, leading to ~
coverage violations [Barber et al., 2023, Tibshirani et al., 2019]. 4



Methodology

The General Solution: SPCI Framework Prived

The SPCI Hypothesis: Since residuals in time series are not i.i.d., the conditional
distribution of the next residual ¢; is predictable given the filtration of past errors F;_1
[Xu and Xie, 2023].

Algorithm (Sequential Predictive Conformal Inference):

1. Base Prediction: Train point predictor f to obtain residuals €;.
2. Dynamic Quantile Regression: Instead of a static histogram, train a regressor
Q to forecast the residual quantile:

&7 = Q(r | {er1,€0-2, - €r-w}) (2)

3. Interval Construction:

~

Cx) = [ + 67, 7% + ] @ )



Methodology

DMQ Model Specification

UNIVERSITA
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Let 7j« be a reference quantile (e.g., the median). The model defines the entire

distribution relative to this anchor using positive distance processes 7;

[Catania and Luati, 2023].

The Quantile Process:

Tj+1 .
g — e i T < T
T Ti* .
ar =9 a¢ if 7; = 7
Ti—1 .
g+ e 7> 7

(Lower Tail)
(Reference)
(Upper Tail)

Advantage 1 (Strict Positivity): The distance is defined as 1; ; = exp(&; ). Since
exp(-) > 0, the quantiles cannot cross by construction, solving the primary defect of

classical quantile regression.

)



Methodology

Evolution of the Parameters Wkamm

The dynamics of the reference level and the distances are governed by Generalized
Autoregressive Score (GAS) updates.

Reference Quantile Dynamics:
af" =7 (1= B)+ Bay +auy (5)

Distance Dynamics:
=81 =)+ -1+ yu? (6)

= 0= (a,B,0,7) are static parameters estimated via the Hogg function.

= u, is the forcing variable (the score), which drives the adaptation of the interval

<J

width based on the gradient of the loss.



Methodology

The Score: Driving Adaptation i
The "Hit" Variable: The core signal is the deviation of the realization from the expectation:
zip =y <q') =7 (7)

The Forcing Variables (The Gradient): Derived from the gradient of the aggregate check
loss:

Z pr. (vt —agi*) (Updates Distance/Scale) (8)
3@ ¢
) . .
X oo Z pr. (vt — qi¥)  (Updates Reference/Location) (9)
t

Advantage 2 (Adaptivity): DMQ uses these gradients to react instantly. A volatility spike
increases u;’ (expanding widths 7)), while a structural break in price levels activates u;”", é)
shifting the entire distribution.
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Experimental Setup: The German Market e
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Case Study EPEX & Results

Experimental Setup: The ARX Model et

The point forecasts are generated using an ARX (AutoRegressive with Exogenous inputs)
structure. For a given time step t and transformation f(-):

7 G 7

Pd,n = Bho+ Zﬁh,ipdfr‘,h + Z'Yh,jpd—l,hfj + Z5h,ka + Bh,Ld,h + Bn,wWa,h + Bh,5Sd,n +€d,h
i=1 j=1 k=2

Exogenous: Load, Wind, Solar

Sum: Previous Days  Sum: Previous day hours ~ Sum: Week Days
(10)
We employ 5 variance stabilizing transformations—the Logistic, Robust Box-Cox (A = 0.5),
Inverse Hyperbolic Sine (asinh), Mirror Log (mlog, ¢ = 1/3), and N-PIT—as defined in
[Uniejewski et al., 2018] to yield 5 different point forecasts estimated via ridge regression.

)



Experimental Setup: Ensemble Strategy B

1. Window Calibration (Ridge on V;)

For each VST model (m), we aggregate forecasts from 4 window lengths
(1) [Wang et al., 2023, Hubicka et al., 2019]. Weights w; are learned via
Ridge Regression (minimizing MSE) on recent history V;:

b Step 1: Generate 4
ocal o F
«Vr,nlw = E W Ytm St E wy=1,w >0 andcw orecasts (per VST)

Step 2: Calibrate
Window Weights

We combine the 5 calibrated VST models (m) using Quantile Regression

leL ﬁ—‘—‘_ﬁ 4 Upper
= Raw
b = = ¢ Forecasts ~ (50035")4
| =150 (1vsT) 1 Calibrated FINAL Point 4
! 50, VST Forecast Forecast 0% 90%PI
: (DMQ Output on
: Va2 @0 dags) Forecast Errors)
2. VST Stacking (Median Reg. on V) ! Stack Weight Calt. N(qug;\;i
i
I
I

h "
(7 = 0.5) on a separate window V. This minimizes Absolute Error :ﬁw;"'m's)i
(MAE), making the forecast robust to outliers: i o H 2 foni Forecast Errors =5+
1o =2021-01-08 1+720 1+810 15+900 ting = 2023-12:26 ¢
~ : Rolling process
Ve = E Bm - 95w | B* = argmin E leil
B
meM

Result: A robust point forecast anchoring our probabilistic methods. 11



Performance Evaluation: Benchmarking Rty

The Naive Benchmark Definition
Let Py 1, be the price on day d at hour h. The naive forecast ,‘sga},"e is defined as:

I"pnaive
>

_ {Pdl,h if d € {Tue, Wed, Thu, Fri} (Persistence) (11)

Py_7,n if d € {Sat, Sun, Mon} (Weekly Lag)
Metrics Comparison

The table below compares the 5 VST-ARX models and the Stacked ensemble against the Naive benchmark over
the test period (2021-2024).

Method MAE (€/MWh) RMSE (€/MWh) sMAPE (%)
Naive Benchmark 30.43 47.50 56.51
VST: Logistic 10.70 17.81 26.42
VST: Robust Box-Cox 8.52 15.56 2321
VST: Arcsinh 7.28 11.90 21.23
VST: Mirror Log (mlog) 13.99 76.71 26.68

VST: N-PIT 10.41 17.50 26.34 \19
Stacked Ensemble 8.01 14.92 21.86
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Residual Analysis: Autocorrelation Structure

We examine the Partial Autocorrelation Function (PACF) of the model residuals to assess the quality of the
ARX filtration. Ideally, residuals should be white noise (no significant lags).

Key Observations:

= Weekly Seasonality: Significant spikes at lags k = 7,14,21 (marked in red) persist in the residuals.
= Implication: The standard ARX model with weekday dummies accounts for the average weekly pattern
but fails to capture the full dynamic weekly cyclicity of prices.
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Forecast Analysis: First Month Performance

Forecast Fan Chart (Dec 26 - Jan 26)




H A
Global Forecast Performance Metrics AR
Method Interval PICP Pinball Average Width Winkler p,. (Kupiec)

DMQ 50% 0510 3.283 10.97 26.26 0.072
70%  0.700 2592 17.25 34.55 0.932
80% 0792  2.102 22.09 42.04 0.075
90%  0.894 1.458 30.62 58.33 0.053
QRA 50%  0.480  3.101 9.24 24.81 0.000
70%  0.668  2.468 15.28 32.90 0.000
80% 0768  2.007 20.28 40.15 0.000
90%  0.879 1.373 28.99 54.94 0.000
SQRA 50%  0.501 3.099 9.68 24.79 0.915
70%  0.686  2.465 15.90 32.87 0.006
80% 0781  2.001 20.88 40.01 0.000
90%  0.886 1.366 29.82 54.63 0.000
HS 50%  0.494  3.368 10.51 26.94 0.288
70%  0.687  2.680 16.80 35.73 0.006
80% 0781 2.188 21.64 43.75 0.000
90%  0.882 1.526 30.31 61.03 0.000
cp 50%  0.508 3.388 11.07 27.10 0.143
70% 0705  2.693 17.62 35.91 0.332

80%  0.796 2.192 22.49 43.83 0.399 15
90%  0.891 1.519 30.71 60.75 0.006



Visual Results: Adaptivity (Day View) e

Comparison of Rolling Probabilistic Metrics (90% PI)
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Conclusion
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Methodological Contribution

= Shift: Transitioned from classical Conformal Prediction approach to Sequential
Predictive Conformal Inference (SPCI).

= Implementation: Operationalized SPCI via a rolling DMQ model on stacked residuals.

Key Empirical Results (German Market)

= Performance: Outperforms state-of-the-art benchmarks. Notably, it is the only model
to pass the Kupiec test across all confidence levels (null hypothesis not rejected).

©



Thanks for your attention!

[’A Open discussion welcome] [!" Feedback appreciated]
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