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Temporal hierarchies
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Base forecasts

ARX NARX XGB Mitra



NARX

5 neurons in the hidden layer

Hyperbolic tangent activation functions

Early stopping with 10% validation set

Weights estimated with Levenberg-

Marquardt in Matlab

Final forecast is an average of  10

independently trained networks



Python XGBoost package

Mean squared error loss function

Optuna-based hyperparameter optimization 

10 independent runs once a year, separately for

each hour/block 

Final forecast is an average of  10 XGB decision

trees with different hyperparameters 

XGB



amazon.science/blog/mitra-mixed-synthetic-priors-for-enhancing-tabular-foundation-models

Mitra

12-layer Transformer of  72 M parameters

Pretrained on synthetic data

Zero-shot forecasting with in-context learning
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Unreconciled forecasts



Minimum trace (MinT) reconciliation

Reconciled forecasts

Base forecasts

Summing matrix 

Error covariance matrix 

Summing matrix Wickramasuriya et al. (2017) 



Having estimated base models for block h of day d 
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Step II: Compute errors

Forecast error 
covariance matrixLedoit & Wolf

(2004)

shrinkage



Step III: Compute weights through MinT

Error covariance Estimated weights



Error covariance Estimated weights

Step III: Compute weights through MinT
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Capacity 1 MWh

C-rating 1

Efficiency 0.9

Part II - Stealing profits

Profit = Efficiency × Sell price × Capacity − (1/Efficiency) × Buy price × Capacity − Other costs
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New temporal hierarchy - effective price spreads 

Profit = Efficiency × Sell price × Capacity − (1/Efficiency) × Buy price × Capacity − Other costs

Spread(H1, H2) = Efficiency × Price(H2) - (1/Efficiency) × Price(H1)
such that H2 > H1

300 base forecasts: 24 hourly prices and 276 effective price spreads

Serafin & Weron (2025) 
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Stealing Profits

ARX NARX XGB

Profit = Efficiency × Sell price × Capacity − (1/Efficiency) × Buy price × Capacity − Other costs



Stealing Profits

 Other costs = 0 €  Other costs = 50 €  Other costs = 100 €

A
R

X

A
R

X

A
R

X

N
A

R
X

N
A

R
X

N
A

R
X

X
G

B

X
G

B

X
G

B



Stealing Profits

ARX NARX XGB

Profit = Efficiency × Sell price × Capacity − (1/Efficiency) × Buy price × Capacity − Other costs



Stealing Profits

 Other costs = 0 €  Other costs = 50 €  Other costs = 100 €

A
R

X

A
R

X

A
R

X

N
A

R
X

N
A

R
X

N
A

R
X

X
G

B

X
G

B

X
G

B


