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Hourly Forecasts
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Temporal hierarchies
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Step I: Compute base forecasts

Estimate base models for block h of day d
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NARX

« 5 neurons in the hidden layer
« Hyperbolic tangent activation functions

 Early stopping with 10% validation set

« \Weights estimated with Levenberg-

Marquardt in Matlab

 Final forecast is an average of 10

independently trained networks



XGB

« Python XGBoost package

« Mean squared error loss function

« Optuna-based hyperparameter optimization

« 10 Independent runs once a year, separately for

each hour/block

 Final forecast is an average of 10 XGB decision

trees with different hyperparameters



Mitra

« 12-layer Transformer of 72 M parameters
« Pretrained on synthetic data
« Zero-shot forecasting with in-context learning

Inference: Real Tabular Data
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Step I: Compute base forecasts

Estimate base models for block h of day d
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Minimum trace (MinT) reconciliation
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Step II: Compute errors

Having estimated base models for block h of day d
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Step lll: Compute weights through MinT

Error covariance Estimated weights
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Results
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Part Il - Stealing profits
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Part Il - Stealing profits
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New temporal hierarchy - effective price spreads

Profit = Efficiency x Sell price x Capacity - (1/Efficiency) x Buy price x Capacity - Other costs

Spread(H1, H2) = Efficiency x Price(H2) - (1/Efficiency) x Price(H1)

h that H2 > H1 '
such that He > Serafin & Weron (2025)

300 base forecasts: 24 hourly prices and 276 effective price spreads
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