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State of play of model selection

Model or method selection is typically based on some (single-dimension) summary statistic:
* cross-validated MSE or other error metric.
* information criteria, like the Akaike Information Criterion.

Good summary statistics guard us against overfitting.
* Information criteria explicitly penalize for model complexity.
* Cross-validated errors implicitly do the same.
* 1-step ahead cross-validated MSE is equivalent to AlC.

Arguably, selection should match the supported decision horizon, something that many
metrics ignore.

Forecasting focused - preferences of decision makers & stake/holders?
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A probabilistic treatment of model statistics

 We’ll keep it simple by discussing only the “model case”, i.e., there is a likelihood. You can
replace the likelihood with cross-validated errors and generalize to any method.

* Afairly general expression of likelihood for regression problems (state space formulation)
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A probabilistic treatment of model statistics

* First, whatis standard practice?

* We “simplify”

These just shift the mean of the log-likelihood, and are often
(erroneously)!) ignored, All that Ls left is /= of the normalised Ss€
(so it could all be replaced bgj eross-validated ervors),
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A probabilistic treatment of model statistics

e \WWe make an “intentional t
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* We now have a likelihood expression per observation, let’s name it something imaginative...
EFC25 meet point likelihood A, point likelihood meet EFC25!
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* And likewise, we can have a point AIC, instead of a summary AlC.
This is why we retain the constant above. A wmatter of scale
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A probabilistic treatment of model statistics

The pAIC; of an example model fit
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There are many ways to summarise parametrically or nonparametrically this distribution
—> diverse ranking of models



A probabilistic treatment of model statistics

Let us compare the pAIC of two models on a series. (Blue highlight when ETS(M,N,N) is more
plausible.)

Also, consider the stationarity of your
model selection statistic! ETS(M,A,N) has
lower AIC, but its pAIC is non-stationary
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Risk preferences in model selection

Eventually, we are interested in the probability that the model we choose is the most plausible:
* risk-averse, corresponding to upper quantiles of the model statistic;
* risk-neutral, corresponding to the median,

* risk-tolerant, corresponding to lower quantiles.
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Risk preferences in model selection

An example on a single time series
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What is the impact on forecast accuracy?

* Forecast 883 items
* Daily data, 1021 to 3360 daily sales data
* Test on last 36 days, rolling origin forecasts with horizons of 7, 14, and 21 days.

* Forecast with ETS, perform model selection by mean, median, lower (5%-45%) quantile,
upper quantiles (55%-95%), and sum of quantiles pAIC. Mean pAIC is same as standard AlC.
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Results on RMsSE (mean forecast accuracy) - Nemenyi test

Ranking of quantiles - RMSSE
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Results on scaled Pinball (quantile accuracy) - Nemenyi test

Ranking of quantiles — sPIN 95% Same findings for

quantile accuracy
t+(1-21) 475(70|80|65|60|85(55|50|90|45(40| S |35|30| M 95
o +6.6%
t+(1-14) 4 60|65|55|70|75|80|50|85|45|90(40| S |35[30| M 95
u\o\ +36.5%
t+(1-7) 450(55|45|60|40| S [35]|65|30| M /70 75 80 [ 85 90 [ 95
+11.1%
[0 Insignificant differences Best on t+(1-14) \q
~O— Best on t+(1-7) -~ Bestont+(1-21)
Gatn over benchwmark
M is the mean pAIC (or AIC) (AIC) sPIN

S is the sum of pAIC quantiles



RMsSE

Risk averse model selection — subset of 111 items (a category)
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When does risk tolerance make sense?

Below are tourism flows during before, during, and after Covid-19 (between Australia and
mainland China).
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We produce rolling forecasts of 12 periods (1-year ahead) over 20 series of tourism flows.
Record the distribution of RMSSE over time/series.



When does risk tolerance make sense?
Distribution of RMSSE over
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Risk preferences and model selection

* Riskaverse choices = overall better forecasting performance than literature standard. Risk
tolerance useful under disruptions. Empirically, the exact choice of quantile does not
matter (estimation issues can be a problem).

* Generally applicable 2 select the appropriate relative model information score.
- do not focus on the summary statistic but consider the whole distribution;

* Combine instead of selecting forecasts: risk averse model pooling! (paper coming up!)

* Embedrisk preferences of stakeholders/process onto models that give probabilistic
forecasts (there are two separate uncertainties: model and forecast, the forecast variance
ignores the risk of model misspecification, but it is conditioned on it!)

* Open gquestion:
Use the same quantile trickery to estimate model parameters. Does this make sense?
Effectively we make models “blind” to specific errors during estimation. There may be
benefits, but there are plenty of pitfalls as well!



Questions?

Nikolaos Kourentzes

nikolaos@kourentzes.com

Paper is under review — contact me for a copy!
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