

Electricity Price Dynamics under Geopolitical Shocks: Assessing Resilience on the Path to Decarbonization

Ibtissem Khelifati, Stéphane Goutte, Raphaël-H. Boroumand

UMI SOURCE, UVSQ, UPSaclay, IRD
Climate Economics Chair

EFC, Dec, 2025

Summary

① Introduction

② Motivations

③ Methodology

④ Results

⑤ Conclusion

Introduction

Decarbonizing Europe's Energy Sector in a Shock-Prone Context

- The EU aims to **reduce greenhouse gas emissions by 55% by 2030** (vs. 1990) as a milestone toward climate neutrality in 2050.
- The energy transition requires a massive **increase in renewable energy**, with a target of at least 42.5% of final energy consumption by 2030 (up to 45%).
- However, decarbonization must remain compatible with **security of supply**, **industrial competitiveness**, and **affordable electricity prices**.
- Shocks such as the **Russia-Ukraine war** have highlighted the vulnerability of the European electricity system: soaring gas prices immediately spilled over into electricity markets.
- In response, the EU launched the **REPowerEU Plan** to reduce dependence on Russian fossil fuels and accelerate the transition.

The European electricity market

- European electricity market has different regional groups.
- Each country has its own **electricity production mix** and **merit order curve**.
- Consequently, each country has its **own price**. Price can be zonal with sometimes different zones inside a particular country.
- Some european countries are **interconnected** to export and import electricity from other european countries.

The electricity price

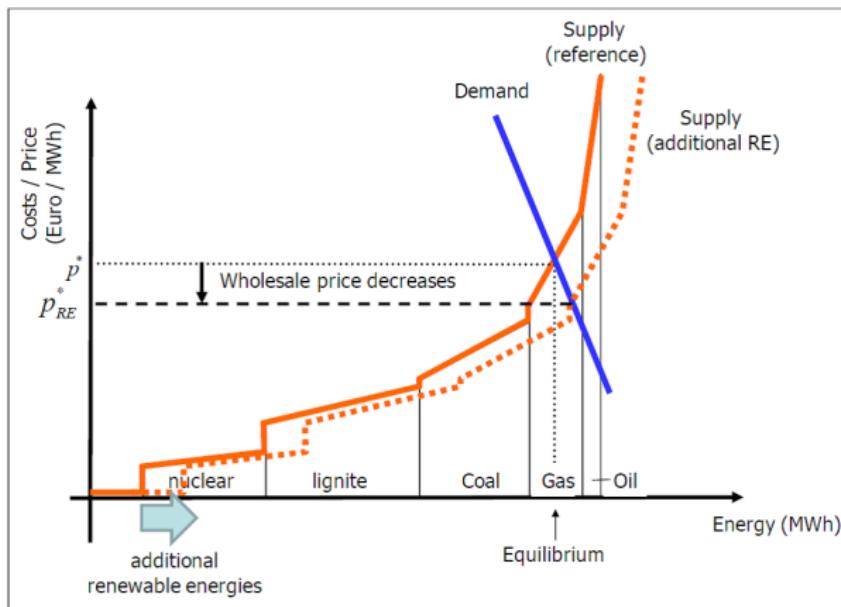


Figure: Merit Order and system marginal price

Research question and motivations

Research question

- Different **energy policies** have been put in place in the EU to achieve energy neutrality by 2050.
- The aim of our research is to determine the effects of a geopolitical shock on the electricity prices. More precisely, in the event of a supply disruption, how **a given electricity mix** can influence the electricity prices?
- We focus on the case of the Russia-Ukraine war.

Key Literature Insights

Gas disruption and price shocks

- Russian pipeline deliveries fell by **120 bcm** between 2022–2023 (IEA).
- Gas prices surged by **+180%** within two weeks of the Ukraine invasion (ECB, 2022).
- European countries were affected **asymmetrically**, depending on their reliance on Russian gas (Martínez-García et al., 2023).

Energy market interactions

- **Geopolitical risks strongly shape electricity prices** (Saâdaoui et al., 2023).
- Fossil fuel and electricity prices co-move via the **merit-order mechanism** (Zakeri et al., 2023; Creti & Fontini, 2019).

Carbon pass-through

- Rising CO₂ prices increase **marginal generation costs** for fossil units (ETS).
- Several countries reopened fossil plants in 2022–2023, raising emissions and reinforcing carbon–electricity price coupling (Jouvet et al., 2013).

Methodology

An empirical study

- An **empirical study** is chosen to study the effects of the Ukraine-Russia War on electricity prices of Germany and France, according to their electricity mix and emissions rates.
- **Germany** and **France** have distinct approaches to energy policy, each reflecting different strategic decarbonization choices and national priorities.

Context

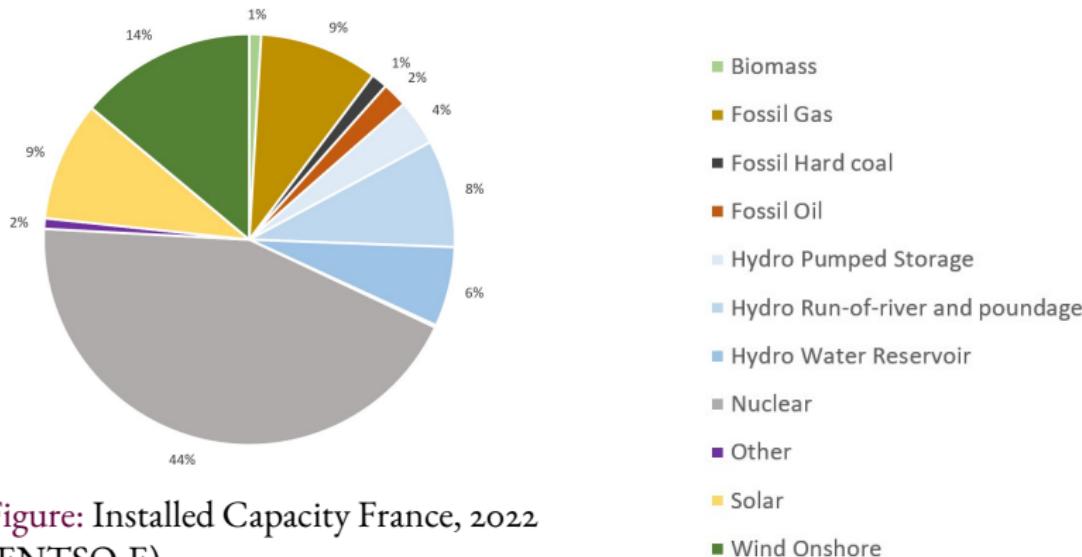


Figure: Installed Capacity France, 2022
(ENTSO-E)

Context

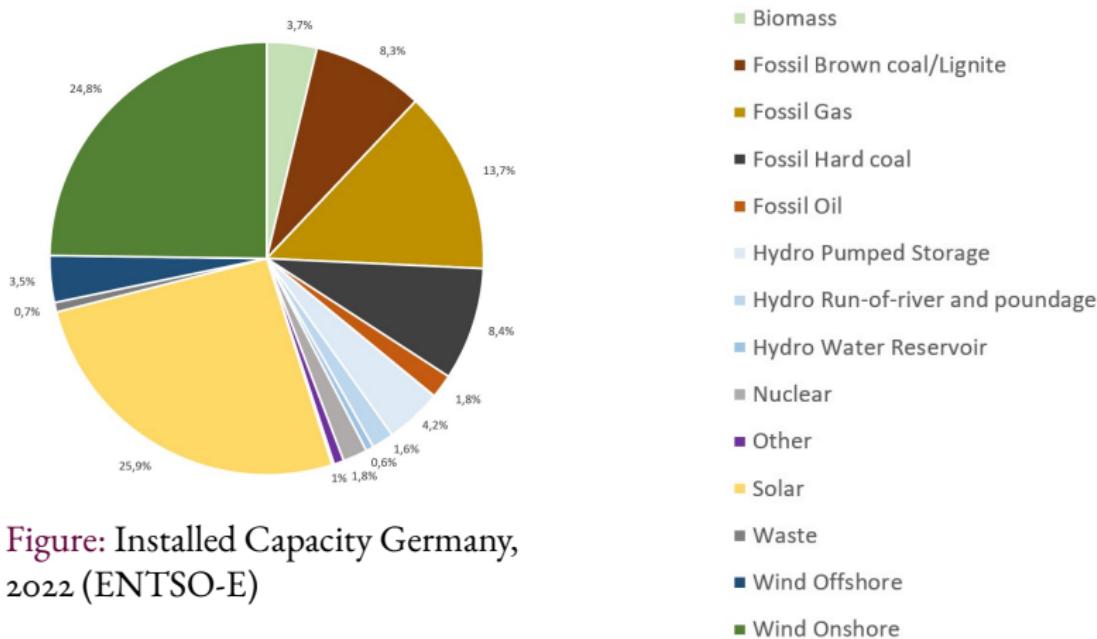
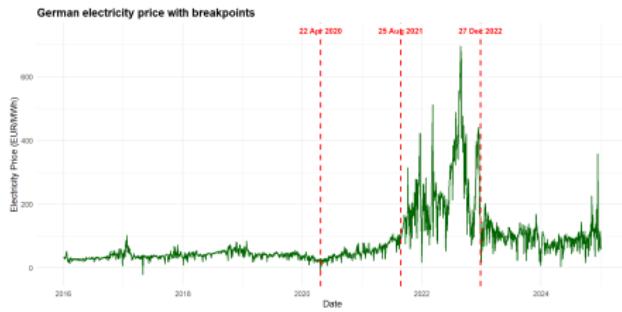


Figure: Installed Capacity Germany, 2022 (ENTSO-E)

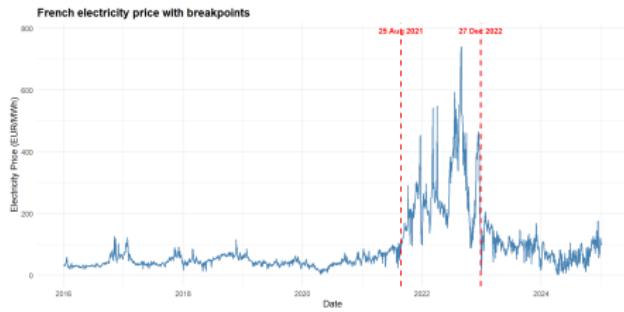
Variables

Variable	Unit	Description
Electricity prices (Spot)	€/MWh	Spot day-ahead prices (France and Germany)
Gas prices (TTF futures)	€/MWh	Dutch TTF front-month futures (ICE)
Coal prices (API2)	€/t	ICE API2 Rotterdam (CIF ARA)
EU ETS price (EUA)	€/tCO ₂	EUA futures emissions price
Electricity generation	GWh	Converted from MW to GWh
Cross-border imports (GER→FRA)	GWh	Positive values = imports (MW→GWh)
Time period	Jan 2016 – Dec 2024 (8 years)	
Frequency	Daily (2,244 observations)	

I. A regression analysis


The baseline specification estimates the relationship in levels:

$$P_t^{Elec} = \beta_0 + \underbrace{\beta_1 P_t^{Coal} + \beta_2 P_t^{Gas} + \beta_3 P_t^{EUA}}_{\text{Market variables}} + \underbrace{\beta_4 Ren_t + \beta_5 Nuc_t + \beta_6 Fos_t}_{\text{Electricity mix variables}} + \underbrace{\beta_7 Imp_t}_{\text{Import variable}} + \varepsilon_t$$


Structural change

- Indeed, during the period observed (from January 2016 to December 2024), the energy crisis was a significant **shock on energy markets**. This type of shock generates changes in the dynamics that need to be taken into account.
- In fact, the electricity and gas prices have begun to rise months before the outbreak of the war (24th February 2022).
- Using a **breakpoint test** (Bai et al. (1998); Zeileis et al. (2003)), a **structural change** was statistically identified on **September 1, 2021**.

Structural change

Germany (2016–2024)

France (2016-2024)

Quantile Regressions

- **Electricity prices react asymmetrically to shocks** (geopolitical disruptions, supply stress, fuel price spikes). Mean regression (OLS) hides these heterogeneous responses across the distribution.
- **Resilience is a tail property.** Understanding how prices behave in the *upper quantiles* (extreme price events) is crucial to assess vulnerability under stress.
- **QR better identifies extremes and heterogeneity** in the pass-through of gas, coal, CO₂ prices and electricity generation, especially relevant during geopolitical shocks.
- We concentrate the analysis **on the 2020-2024** period to capture the effects of the Ukraine war.

II. A Markov Switching approach

- Electricity prices exhibit **non-linear dynamics**, driven by structural changes in supply, demand, fuel prices, and extreme events.
- Standard linear time-series models fail to capture regime-dependent behavior, such as periods of high volatility or structural stress.
- A Markov Switching approach allows the system to **transition between latent regimes** (e.g., “normal” market functioning vs. “stress” or “crisis” periods).
- Regime identification improves the understanding of:
 - Price formation mechanisms under different conditions,
 - Changes in volatility and persistence across regimes,
 - Comparative dynamics between France and Germany, whose electricity mixes and shock exposures differ.

Markov Switching Specification

MS with exogenous regressors:

$$P_t^{Elec} = \mu_{S_t} + \phi_{S_t} P_{t-1}^{Elec} + X_t' \beta_{S_t} + \varepsilon_{t,S_t},$$

$$\varepsilon_{t,S_t} \sim \mathcal{N}(0, \sigma_{S_t}^2), \quad S_t \in \{1, 2\}.$$

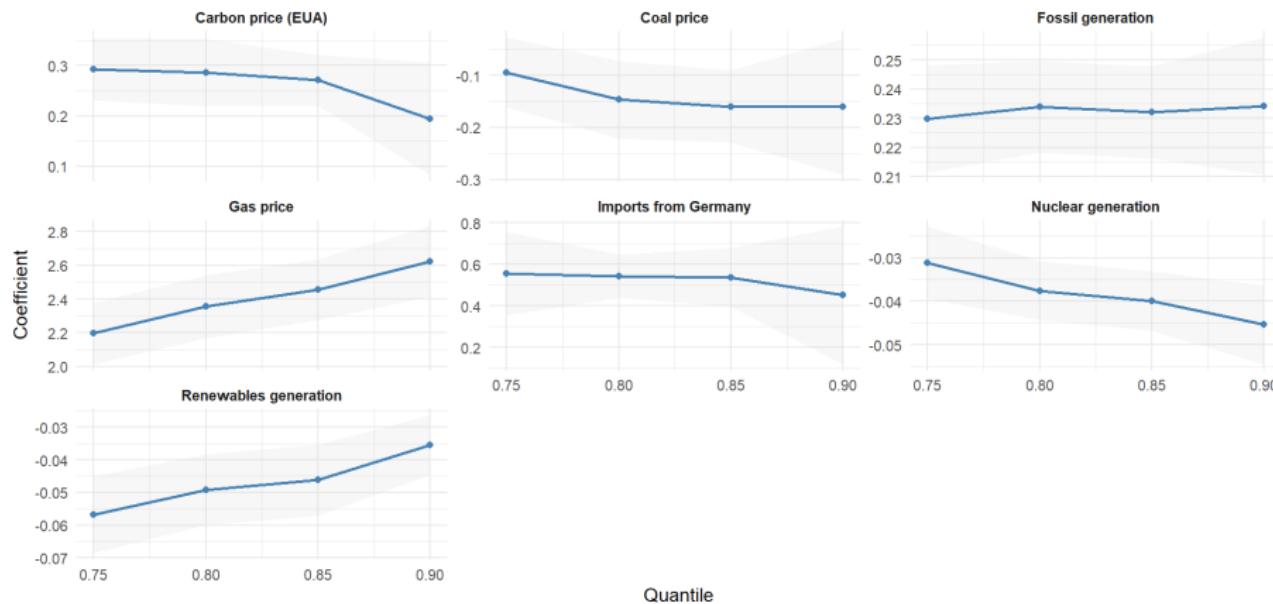
Regime process (first-order Markov chain):

$$\Pr(S_t = j \mid S_{t-1} = i) = p_{ij}, \quad P = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix}.$$

$$X_t = (P_t^{Coal}, P_t^{Gas}, P_t^{EUA}, Rent_t, Nuc_t, Fos_t, Imp_t)'$$

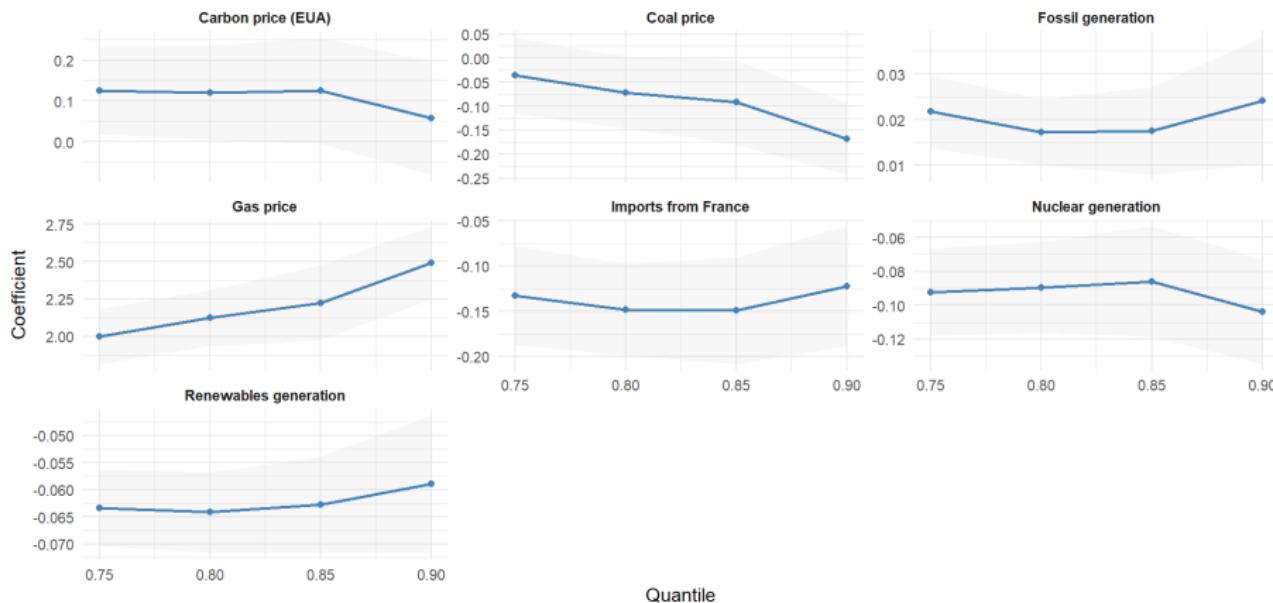
Results

I. 1) Linear regression results (2016–2024)

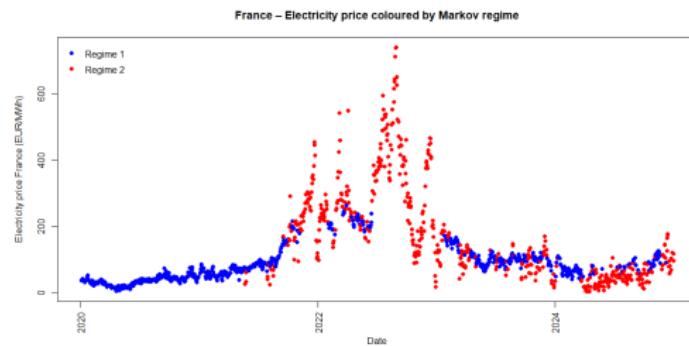

Variable	France	Germany
Intercept	9.0182. (4.7581)	68.3094*** (6.9659)
Market variables		
Gas price	1.9101*** (0.0370)	1.8559*** (0.0360)
Coal price	-0.0162 (0.0214)	-0.0950*** (0.0204)
Carbon price	0.3150*** (0.0290)	0.3821*** (0.0399)
Generation mix		
Nuclear production	-0.0054 (0.0048)	-0.0686*** (0.0128)
Fossil production	0.1797*** (0.0110)	0.0103* (0.0041)
Renewables production	-0.0690*** (0.0073)	-0.0840*** (0.0038)
Interconnection		
Cross-border flows FR-DE	0.8642*** (0.0626)	-0.0984** (0.0309)

*** $p < 0.001$, ** $p < 0.01$, * $p < 0.05$.

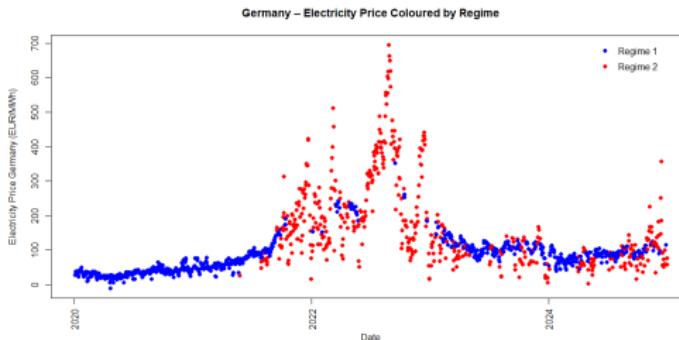
- **Gas and carbon prices show the strongest correlations** with electricity prices, with similar magnitudes across markets.
- **Renewables are associated with price-depressing effects**, more markedly in Germany, consistent with higher RES penetration.
- **Interconnection effects differ**: imports from Germany **are associated with price increases in France but with price decreases in Germany**.
- **Linear regression appears limited in shock periods**: it does not capture correlated asymmetries and volatility clustering, motivating regime-switching or quantile methods.


I. 2) Quantile Regressions (France, 2020–2024)

Quantile Regression Coefficients (with CI) — France



I. 2) Quantile Regressions (Germany, 2020–2024)


Quantile Regression Coefficients (with CI) — Germany

II. MS Regimes and Electricity prices

France (2020–2024)

Germany (2020–2024)

Regime Dynamics: Transition Probabilities and Durations

France

Transition matrix

$$P^{FR} = \begin{pmatrix} 0.9573 & 0.0563 \\ 0.0427 & 0.9437 \end{pmatrix}$$

Expected durations

$$D_1^{FR} = 23.42, \quad D_2^{FR} = 17.76$$

Key points

- Highly persistent regimes.
- Regime 1 lasts longer than Regime 2.

Germany

Transition matrix

$$P^{DE} = \begin{pmatrix} 0.9485 & 0.0515 \\ 0.0752 & 0.9248 \end{pmatrix}$$

Expected durations

$$D_1^{DE} = 19.41, \quad D_2^{DE} = 13.29$$

Key points

- Persistent regimes but shorter than France.
- Faster cycle between stable and stress states.
- More volatile dynamics overall.

MS Model Results – France (2020–2024)

Variable	Regime 1	Regime 2
Intercept	18.6661*** (2.0872)	-56.8704* (23.3516)
Lagged elec. price	0.4078*** (0.0269)	0.5726*** (0.0272)
Renewables generation	-0.0365*** (0.0035)	-0.0902*** (0.0181)
Fossil generation	0.1063*** (0.0073)	0.1011*** (0.0304)
Nuclear generation	-0.0144*** (0.0024)	0.0514*** (0.0155)
Gas price	0.9483*** (0.0676)	0.7329*** (0.0738)
Coal price	0.0204 (0.0222)	0.0537 (0.0376)
Imports from Germany	0.0824** (0.0279)	0.7939*** (0.1318)
Carbon price	0.2656*** (0.0202)	0.4265* (0.1763)

Regime-specific fit

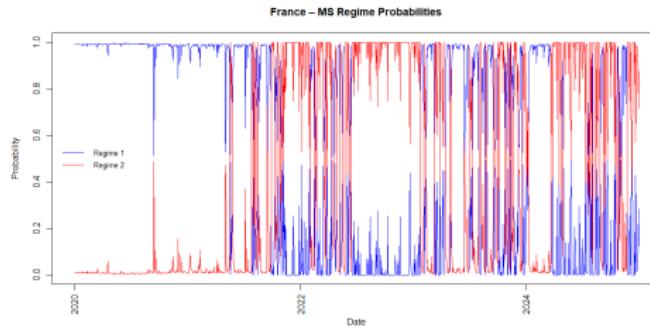
	Regime 1	Regime 2
Residual standard error	5.85	32.61
Multiple R^2	0.986	0.953
Expected duration	23.42	17.76

Main insights (France):

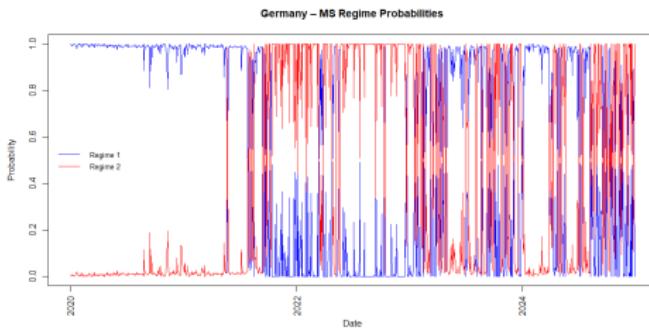
- **Regime 1 = stable regime**, low volatility and strong explanatory power.
- **Regime 2 = stress regime**, with very large volatility and stronger persistence.
- **Gas and CO₂ dominate** price formation in both regimes.
- **Renewables associated with prices decreases**, stronger effect in Regime 2.
- **Nuclear reverses effect**: negative in Regime 1, positive in Regime 2 (scarcity context).
- **Imports from Germany** sharply raise prices in Regime 2.

MS Model Results – Germany (2020–2024)

Variable	Regime 1	Regime 2
Intercept	14.8193*** (3.5918)	75.5044** (26.6441)
Lagged elec. price	0.1947*** (0.0216)	0.4342*** (0.0262)
Renewables generation	-0.0334*** (0.0021)	-0.1423*** (0.0120)
Fossil generation	0.0152*** (0.0020)	0.0191 (0.0152)
Nuclear generation	-0.0065 (0.0075)	-0.1305*** (0.0356)
Gas price	0.7466*** (0.0607)	0.9854*** (0.0744)
Coal price	0.2140*** (0.0228)	-0.0424 (0.0327)
Imports from France	-0.0520*** (0.0146)	-0.1527 (0.1143)
Carbon price	0.4015*** (0.0292)	0.6465** (0.1982)


Regime-specific fit

	Regime 1	Regime 2
Residual standard error	6.0741	32.8748
Multiple R^2	0.9814	0.933
Expected duration	19.41	13.29


Main insights (Germany):

- **Regime 1 = low-volatility** with moderate persistence and tight explanatory power.
- **Regime 2 = high-volatility**, very persistent, capturing stress conditions.
- **Gas and CO₂** remain dominant drivers in both regimes.
- **Renewables associated with prices decreases**, especially in R₂.
- **Nuclear significant only in R₂**, consistent with a stabilizing role in scarcity episodes (even if phase-out).
- **Cross-border flows** associated with prices decreases in R₁, but are not significant in R₂.

MS Regime Probabilities

France (2020–2024)

Germany (2020–2024)

MS Model Comparison – France vs Germany

- Both countries exhibit two persistent regimes: a **low-volatility** regime (Regime 1) and a **high-volatility** regime (Regime 2).
- **France shows more persistent regimes:** longer expected durations in both normal and stress states.
- **Volatility in the stress regime is similar**, with very large residual errors in Regime 2 for both countries.
- **Gas and CO₂ prices dominate** price formation in both markets; the pass-through is slightly stronger in Germany in the stress regime.
- **Renewables associated with decreasing price in both countries**, with a stronger effect in Germany, especially in Regime 2.
- **Cross-border flows are asymmetric:** imports from Germany raise French prices (especially in Regime 2), while imports from France tend to reduce German prices mainly in Regime 1.

Conclusion

Conclusion

Main findings

- **Electricity affordability is tightly linked to fossil market dynamics:** gas is the dominant driver of price volatility, with carbon also exerting growing influence since 2021.
- **Electricity mixes matter for resilience:** renewables are associated with lower elec. prices, while nuclear acts as a stabilizing factor whose availability proved critical during the crisis.
- **European energy markets are highly interconnected:** spillovers are strong and short-lived, with gas, carbon and FR/DE electricity acting as central nodes of volatility transmission.

Policy implications

- **Reduce exposure to gas** by diversifying the generation mix and increasing system flexibility.
- **Accelerate renewable deployment** while supporting it with storage, demand management and robust interconnections.
- **Strengthen nuclear reliability in France** and manage German phase-out effects to limit systemic volatility.
- **Integrate demand-side strategies:** sufficiency and flexibility enhance resilience to geopolitical and climate shocks.

Ensuring affordable and sustainable electricity requires a systemic approach combining supply diversification, European coordination, and demand management.

Limitations

Scope-related limitations

- The analysis focuses on **France and Germany**: broader EU comparisons could reveal additional heterogeneity in market resilience.

Thank you !