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German day-ahead power price distributions

−
10

0
0

10
0

20
0

30
0

40
0

P
ric

e
Power [EUR/MWh]
Price density

CO2 [EUR/tCO2]
Gas [EUR/MWh]

Coal [EUR/t]
Oil [EUR/bbl]

0
20

40
G

en
er

at
io

n 
[G

W
]

Jan Feb Mar Apr May Jun Jul

Wind Onshore Wind Offshore PV

▶ Highly complex and volatile time series, uncertainty changes
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Data-driven and fundamental models
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Simple fundamental model: the classical merit order
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Constructing the merit order
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Constructing the merit order
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Modelling the price with the merit order
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Proposal

To our knowledge, this is the first fully probabilistic fundamental
model for electricity price forecasting.

3 steps:

1. Generate probabilistic forecasts for inputs

2. Sampling and put into a fundamental merit-order model ⇒
price outcomes

3. Calibrating the model parameters to historical data
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Power plant availabilities
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Distributional forecasting of inputs (GAMLSS framework)

▶ for each input variable yt+1 model each parameter of its distribution distribution
D given regressors Xt

yt+1 | Xt ∼ D
(

θ
(1)
t+1, . . . , θ

(n)
t+1

)
, (1)

gi

(
θ

(i)
t+1

)
= Xtβ(i), i = 1, . . . , n,

▶ e.g. D = N , g(·) is a link function
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Input forecasting - results
▶ Results

True value Day−ahead point forecast Forecasted median
1%−99% quantile 5%−95% quantile 25%−75% quantile
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▶ Dependency modelling via empirical copula:
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Calibration
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Effects - RES
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Effects - Fuels
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Estimating the parameters

▶ Parameters of the merit order model in:
ΘMO = {Efficiencies, CO2 intensities, . . . }

▶ Estimate the parameters ΘMO by minimizing CRPS:

Θ̂MO = arg min
ΘMO

 1
N

N∑
t=1

CRPS

MOt(Loadt ; ΘMO)︸ ︷︷ ︸
P̂ricet

, Pricet

 (2)

s.t. ΘL ≤ ΘMO ≤ ΘU

▶ Efficiencies treated as hyperparameters (weights) to be estimated
▶ Solved using black-box Bayesian stochastic optimization (R pacakge mlrMBO).
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Errors

RMSE MAE CRPS
Naive 41.47 25.98 20.46
JSU 29.19 18.21 14.04
Data-Driven MO 25.81 17.28 13.92

Table 1: Model Error Comparison
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Link

▶ Previous work:

A data-driven merit order:
Learning a fundamental electricity price model

https://arxiv.org/abs/2501.02963
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