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ABSTRACT

In recent years, a rapid development of renewable energy sources (RES) has been observed across the world. In-
termittent energy sources, which depend strongly on weather conditions, induce additional uncertainty to the
system and impact the level and variability of electricity prices. Predictions of RES, together with the level of de-
mand, have been recognized as one of the most important determinants of future electricity prices. In this re-
search, it is shown that forecasts of these fundamental variables, which are published by Transmission System
Operators (TSO), are biased and could be improved with simple regression models. Enhanced predictions are
next used for forecasting of spot and intraday prices in Germany. The results indicate that improving the forecasts
of fundamentals leads to more accurate predictions of both, the spot and the intraday prices. Finally, it is demon-
strated that utilization of enhanced forecasts is helpful in a day-ahead choice of a market (spot or intraday), and
results in a substantial increase of revenues.

© 2021 Published by Elsevier B.V.
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GAMLSS framework
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GAMLSS framework
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GAMLSS non-linear

Classical linear regression GAMLSS linear modeling modeling

Rigby & Stasinopoulos (2005, J. R. Stat.) 5/21



German data
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Polish data
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New England data
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Lasso Estimated AutoRegressive (LEAR) model
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temperature forecasts daily dummies

Lago et al. (2021, APEN), Wagner et al. (2022, JCM), Maciejowska et al. (2023, OUP)
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GAMLSS model
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Misiorek et al. (2006, SNDE), Gaillard et al. (2016, IJF), Maciejowska et al. (2021, ENEECO),

Taylor (2021, IJF), Maciejowska et al. (2023, OUP)
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Quantile Regression (QR)

Involves solving a seperate minimization
problem:
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Postprocessing benchmarks

/ Historical Simulation (HS) \

A model-independent approach that
computes:
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For more details about postprocessing, see: Lipiecki et al. (2024), ENEECO
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Pinball score

The Pinball score for quantile a:

(1 -a)L*-L) ifL <L

PS(LY, L;, ) =« ) | )
kcx(L, — L) if L, > L7

where L¢ is the a-th quantile of the predictive distribution for time t.
It can be averaged accross percentiles - Aggregate Pinball Score (APS):

1 0.99 ~
APS 99 = @ V=0.01 PS (Lt . L,;, Q’)

Elliott & Timmermann (2016, PUP), Hong et al. (2016, IJF), Maciejowska et al. (2023, OUP)
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Aggregate Pinball Score: 99 quantiles

Quantile forecasting Density forecasting
GAMLSS (N) GAMLSS (T)  GAMLSS (JSU)

HS QRA CP IDR  Avg QR GAMLSSo
U, o v Y, o v U, o

Germany

536.8
492.9

527.2 524.7 527.9 525.5 528.9 526.9

LASSO 498.7 497.6 509.2 4991

Poland
TSO 150.3 144.8 148.4 148.5 126.6 144 4 122.7 122.4 122.9 122.6 123.3 122.8

New England
TSO 91.4 84.9 - 81.8 96.5 73.4 86.0 62.0 60.6 61.2 60.1 61.2 60.2

Results for test period: 27.12.2020 - 31.12.2024
For 208-weeks long rolling calibration window
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Aggregate Pinball Score: 20 quantiles

Quantile forecasting

Density forecasting
GAMLSS (N) GAMLSS (T)  GAMLSS (JSU)

HS QRA CP IDR Avg QR GAMLSSo
M, O M M, O M M, O
Germany
TSO 287.7 286.0 284 .4 3011 279.9 219.6 291.9 218.1 213.4 2194 213.9 219.3 213.8
LASSO @ 204.7 204.8 204.5 2181 204.8 201.2 204.6 199.2 193.9 200.2 193.9 200.5 194 .1
Poland
TSO 58.4 56.5 70.5 62.2 S7.7 50.5 56.3 48.5 48.2 48.7 48.3 48.5 48.1
LASSO 47.9 48.0 47.8 53.5 48.3 47.7 47.7 45.5 45.4 45.6 45.5 45.7 45.5
New England
TSO 35.6 32.9 554 36.1 37.5 294 34.5 26.0 24.7 25.7 24.6 25.8 24.7
LASSO 23.7 22.9 23.6 26.0 23.2 22.6 23.9 23.3 22.0 23.2 21.9 23.2 22.0

Results for test period: 27.12.2020 - 31.12.2024
For 208-weeks long rolling calibration window
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Diebold-Mariano (DM) test
The error function: ”71’2”1 _ Ziil ‘ﬂghl

The ‘multivariate’ loss differential series:

A,B B
A7 = gl = gl

The null hypothesis (HO): The alternative hypothesis (H1):
E(ATP) <0 E(AP) =0

Diebold & Mariano (1995, JBES), Ziel & Weron (2018, ENEECO), Lago et al. (2021, APEN)
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Diebold-Mariano (DM) test
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Diebold-Mariano (DM) test
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Conclusions

GAMLSS is able to outperform the benchmarks
while remaining computationally efficient

Usage of LASSO point forecast instead of the
TSO significantly improves the results

The observed improvement is confirmed on
3 different markets with DM test
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Postprocessing benchmarks

Conformal Prediction (CP) / Historical Simulation (HS) \

The ath quantile is given by: A model-independent approach that
computes:
A = zt — %@ if « < 0.5,
q(a|L;) = I, +220-9  gtherwise Qz9, = Ve + Qz(&r),
where A% is the so-called where Q.(¢;) is the sample t-quantile of
errors & = y; — y;

\_ /

For more details, see: Lipiecki et al. (2024), ENEECO




Postprocessing benchmarks

Quantile Regression Averaging / Isotonic Distributional \
(QRA) Regression (IDR)

_ A nonparametric method

 The output £ minimizes the CRPS

Individual

point . TG (72,77 * Isotonic constraint: the quantiles
forecasts . Regression e
et of the response must be non-
Vo, decreasing with respect to the

K regressor /

For more details, see: Lipiecki et al. (2024), ENEECO




Diebold-Mariano (DM) test
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