

From Distributional to Quantile Neural Basis Models: the case of Electricity Price Forecasting

A.Brusaferri, D.Ramin, A.Ballarino

Focus:

Probabilistic Forecasting

Neural Networks

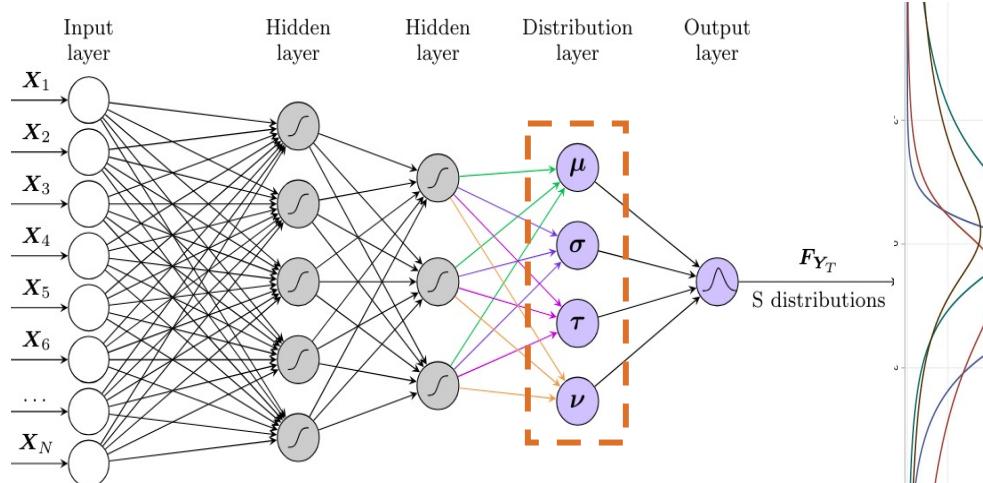
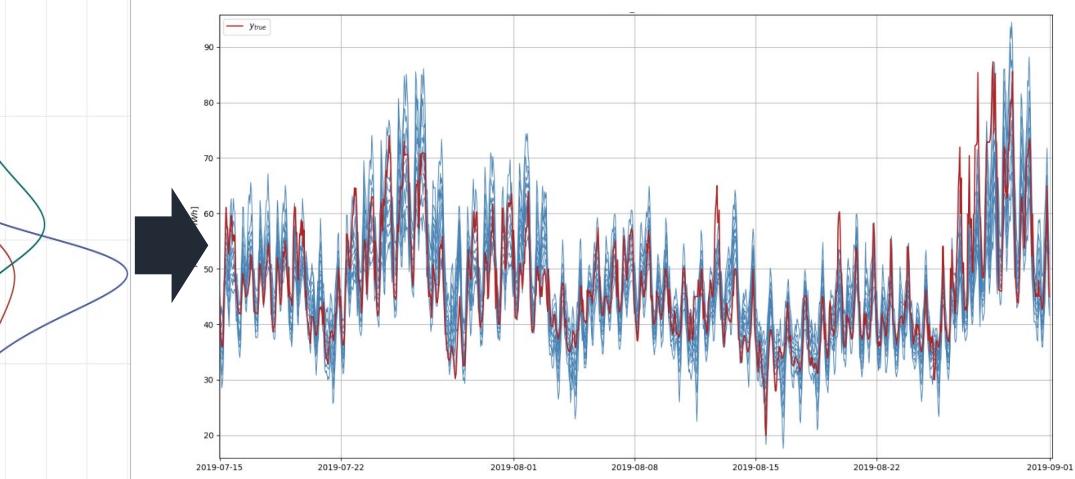
Explainable AI

Context and challenges

Neural probabilistic forecasting

- **Focus:** Distributional/QR-neural networks for probabilistic forecasting ([Marcjasz et al, 2023], [Woo et al 2024], [Brusaferrri et al 2025],...)
- Leverage NNs to parameterize flexible conditional densities/quantiles

$$p(y_{t+1} \dots y_{t+h} | y_{t-k:t}, z_{t-k:t}, x_{t+h}) = f_{\Theta}(y_{t-k:t}, z_{t-k:t}, x_{t+h})$$



XAI challenge

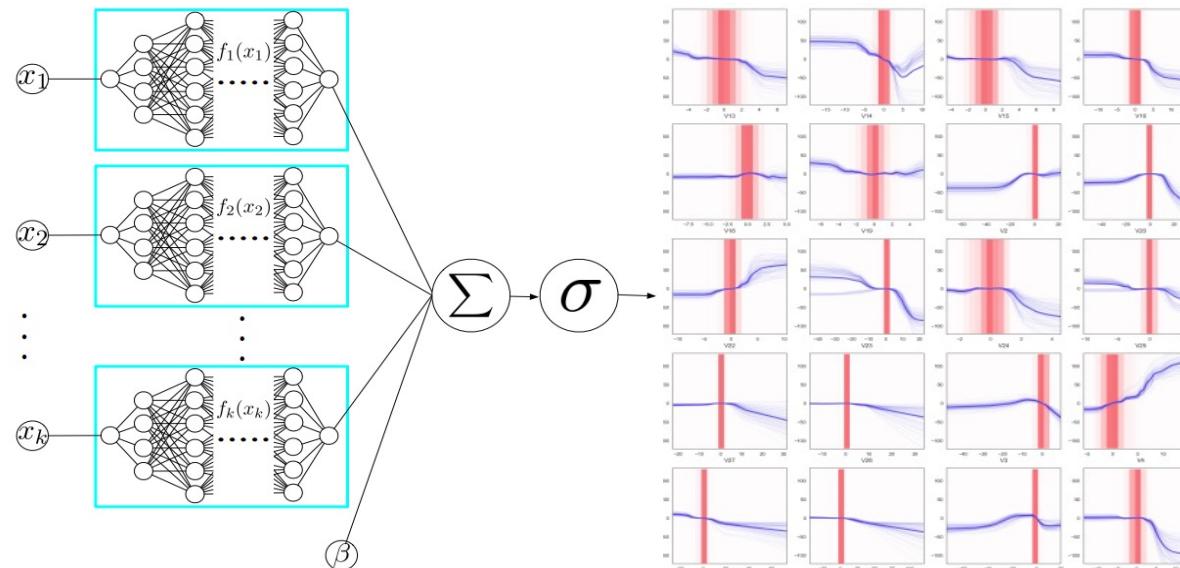
- Focus: Distributional/QR neural networks for probabilistic forecasting ([Marcjasz et al, 2023], [Woo et al 2024], [Brusaferrri et al 2025],...)
- Leverage NNs to parameterize flexible conditional densities/quantiles
- **XAI challenge:** NNs flexible but inherently **black box**
- Learned **relation** between input variables and CDF parameters/quantiles **hidden** to the user

Goal: reveal the **underlying** mechanism leading to the predicted **feature-conditioned** distribution **param/quant**

To trust or
not to trust ?

Recent "Glass-box" NNs research momentum

- NAMs class: taking inspiration from GAM design [Hinton et al, 2021]
- NAM for distributional regression [Thielmann et al, 2024]



$$\mathbb{E}[y_d^h \mid \mathbf{x}_d] = \beta + f_1(x_{d,1}) + \cdots + f_{n_f}(x_{d,n_f})$$

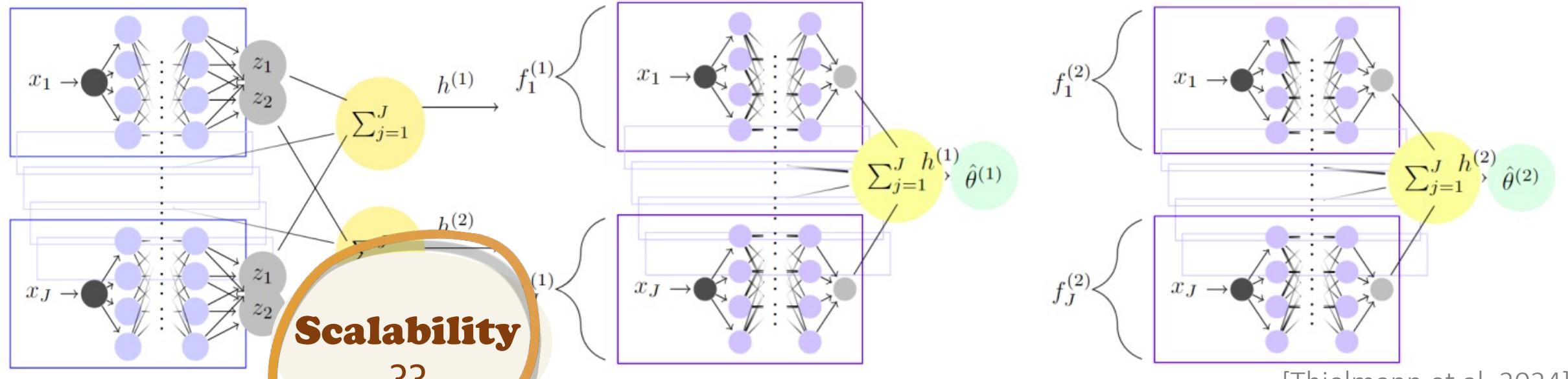
Recent "Glass-box" NNs research momentum

- NAMs class: taking inspiration from GAM design [Hinton et al, 2021]
- NAM for **distributional regression** [Thielmann et al, 2024]

- Still understudied in probabilistic forecasting (PF) context
- Explored for **point forecasting** by [Jo, 2023][Feddersen, 2024]

- NAMs challenging scalability to real world PF applications

Computationally intensive for PF implementation



[Thielmann et al, 2024]

- A NN for each **stage-wise input/density param map**
- e.g.,: $H=24, |X|=100 \rightarrow 2400$ NNs (with param sharing)
- Typically **recalibrated** in PEPF apps (+ ensembling)
- Still computationally "intensive" for target PEPF tasks

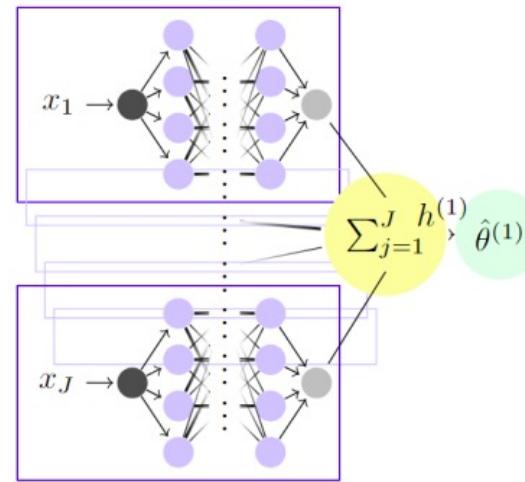
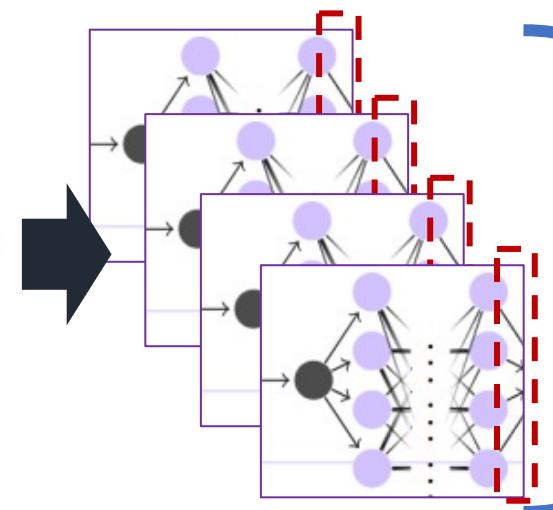
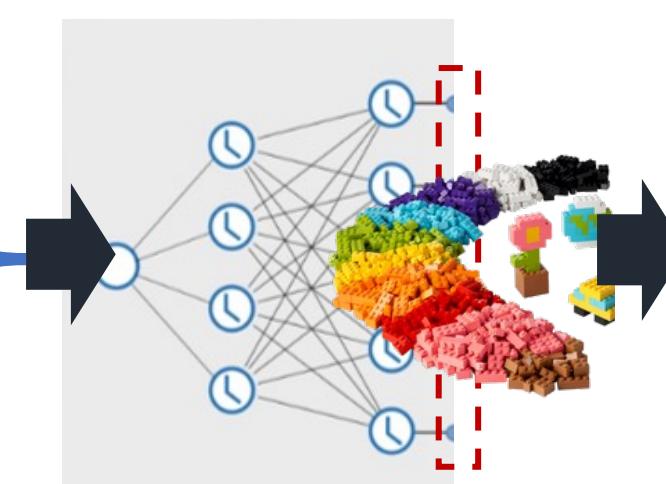
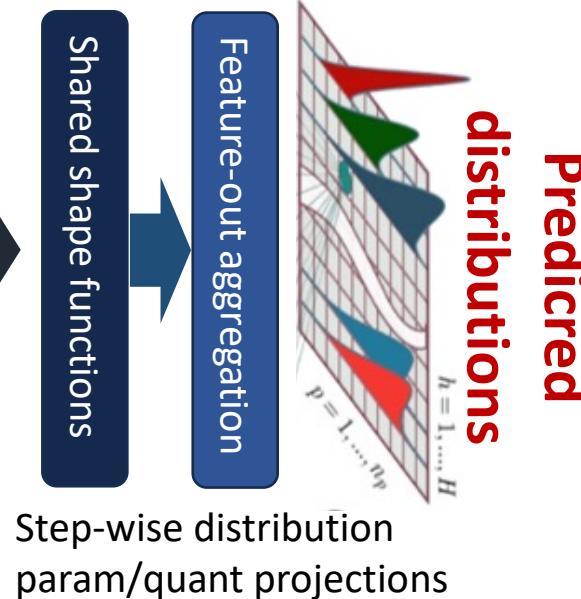
From NAM to D/Q-NBM

NN inspired by GAMLSS/QGAM for PF

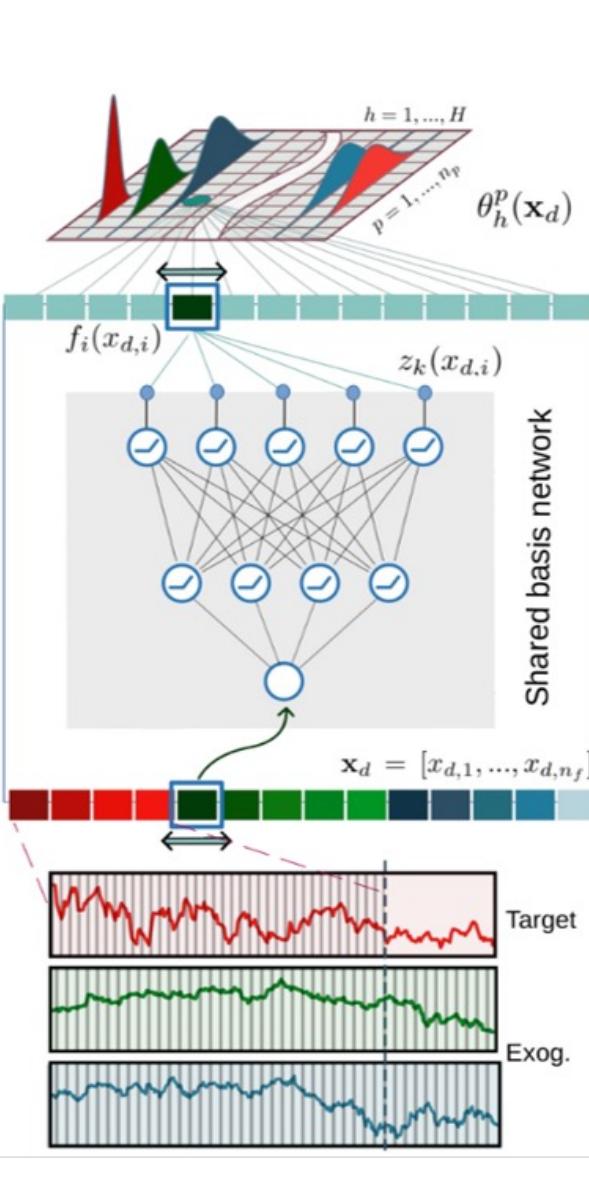
From NAMs to D/Q-NBM

- Leveraging basis decomposition of shape functions [Radenovic et al, 2022]
- Learn a set of **shared latent features** in a multi-step PEPF setup
- Exploit a cheap unique NN for the different feature-output maps
- Combined by **affine projections** supporting dedicated **step-wise** and **param/quantile-wise** feature shape functions **aggregations**

Input features



D/Q-NBM architecture (in math)

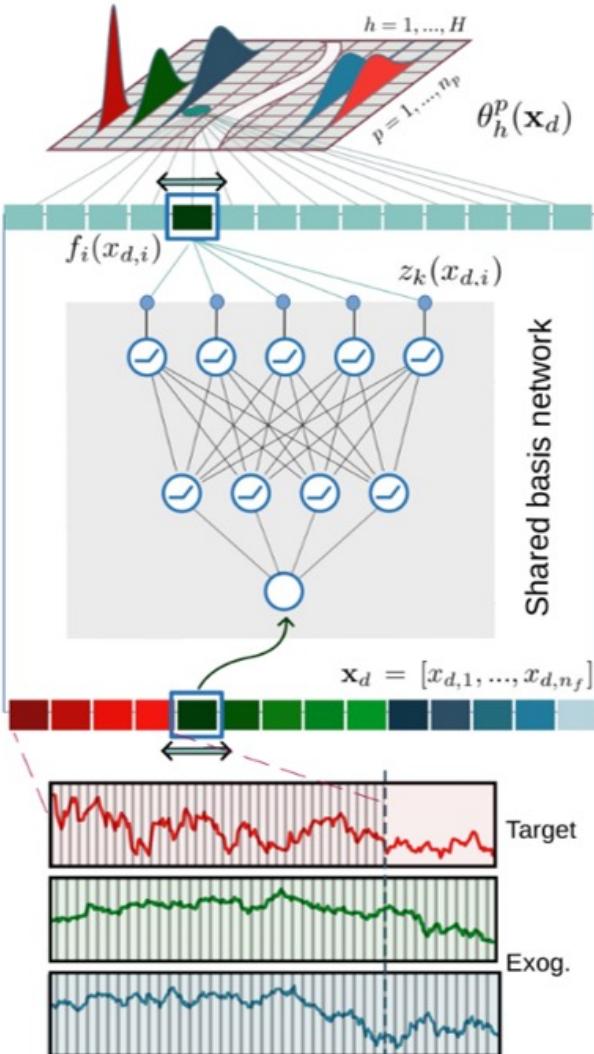


$$\begin{aligned}
 z_k(x_{d,i}) &= \mathbf{a} \left[\sum_{j=1}^{n_u} \omega_{j,k}^{(2)} \mathbf{a} \left[\omega_j^{(1)} x_{d,i} \right] + \omega_{0,k}^{(2)} \right], k = 1, \dots, n_z \\
 f_i(x_{d,i}) &= \sum_{k=1}^{n_z} W_{(i,k)} z_k(x_{d,i}), i = 1, \dots, n_f \\
 \hat{\theta}_h^p(\mathbf{x}_d) &= \mathbf{g}^p \left[\beta_h^p + \sum_{i=1}^{n_f} V_{(h,\gamma,i)} f_i(x_{d,i}) \right], h = 1, \dots, H; p = 1, \dots, n_p \\
 \Theta(\mathbf{x}_d) &= [\theta_1^1(\mathbf{x}_d), \dots, \theta_H^1(\mathbf{x}_d), \dots, \theta_1^{n_p}(\mathbf{x}_d), \dots, \theta_H^{n_p}(\mathbf{x}_d)] \\
 \lambda_d^h &= \Theta(\mathbf{x}_d)^{[h]} \\
 \sigma_d^h &= \epsilon + \varrho \text{ Softplus} \left(\Theta(\mathbf{x}_d)^{[H+h]} \right) \\
 \tau_d^h &= 1 + \varrho \text{ Softplus} \left(\Theta(\mathbf{x}_d)^{[2 \cdot H + h]} \right) \\
 \zeta_d^h &= \Theta(\mathbf{x}_d)^{[3 \cdot H + h]} \\
 d^h(\chi; \mathbf{x}_d) &= \frac{\tau_d^h}{\sigma_d^h \sqrt{2\pi}} \frac{1}{\sqrt{1 + \left(\frac{\chi - \lambda_d^h}{\sigma_d^h} \right)^2}} e^{-\frac{1}{2} \left[\zeta_d^h + \tau_d^h \sinh^{-1} \left(\frac{\chi - \lambda_d^h}{\sigma_d^h} \right) \right]^2} \\
 \sum_{\gamma} (y_d^h - \hat{q}_h^\gamma(\mathbf{x}_d)) \gamma 1\{y_d^h > \hat{q}_h^\gamma(\mathbf{x}_d)\} + (\hat{q}_h^\gamma(\mathbf{x}_d) - y_d^h) (1 - \gamma) 1\{y_d^h \leq \hat{q}_h^\gamma(\mathbf{x}_d)\} \\
 M &\approx AB^\top, \text{ with: } A \in \mathbb{R}^{m \times r}, B \in \mathbb{R}^{n \times r}, r \ll m, n
 \end{aligned}$$

Major ingredients:

- Last hidden layer operates as "shared basis" functions
- Shared basis aggregated in input-specific shape functions
- Shape functions combined in stage-wise parameterization
- Stage-wise link function
- Link fun. parameterizations
- Step-wise distrib. (e.g., JSU)
- Quantile mapping/loss
- Basis dropout
- Low-rank factorization for scalable mapping

D/Q-NBM as NN building block



```
class DQNBMRRegressor:
    def __init__(self, settings, loss):
        self.settings = settings
        self.settings['add_res'] = False
        self.__build_model__(loss)
        self.loss = loss

    def __build_logit__(self, x_in, out_size):
        def concat_with_batch_size(inputs):
            t1, t2 = inputs
            batch_size = tf.shape(t1)[0]
            t2 = tf.tile(t2, [batch_size, 1, 1])
            return tf.concat([t1, t2], axis=-1)

        if self.settings['basis_mode'] == 'full':
            # [B,nf] --> [B,1,1,nf]
            x_b = tf.expand_dims(x_in, axis=1)
            x_b = tf.expand_dims(x_b, axis=1)
            # [B,1,1,nf] --> [B,h,p,nf]
            x_b = tf.tile(x_b, [1, self.settings['pred_horiz'], self.out_size, 1])
            # [B,h,p,nf] --> [B,h,p,nf,1]
            x_b = tf.expand_dims(x_b, axis=-1)
            # [B,h,p,nf] --> [B,h,p,nf,nh]
            x_b = tf.keras.layers.Dense(self.settings['hidden_size'],
                                         activation=self.settings['activation'],
                                         name='l0-basis')(x_b)

        elif self.settings['PF_method'] == 'STU':
            self.out_size = 3
            logit = self.__build_logit__(x_in=x_in, out_size=self.out_size)

            output = tfp.layers.DistributionLambda(
                lambda l: tfp.distributions.TransformedDistribution(
                    distribution=tfd.StudentT(
                        loc=l[0][..., :self.settings['pred_horiz']]],
                        scale=1e-3 + 3*tf.math.softplus(l[0][..., self.settings['pred_horiz']:self.settings['pred_horiz']])),
                        df=1 + 3*tf.math.softplus(l[0][..., self.settings['pred_horiz'] * 2:]]),
                        bijector=tfp.bijectors.Chain([tfp.bijectors.Shift(shift=l[2]), tfp.bijectors.Scale(scale=l[1])])))
            ([logit,target_scales_ex[:,0],target_locs_ex[:,0]])

        elif self.settings['PF_method'] == 'qr':
            self.out_size = len(self.settings['target_quantiles'])
            logit = self.__build_logit__(x_in=x_in, out_size=self.out_size)
```


- Trained multi-step, end-to-end
- 1 NN by tensor broadcasting
- Easy auto build from settings

- Pure TF (Torch) code
- GPU/TPU ready
- Composable in pipeline
- Multimodel ensembles, etc

EPF experiments

Datasets

Open benchmark structured by [Aliyon et al 2024]:

- **Regions:** Germany, Belgium, Spain, Sweden-Stockholm (SE3)
- **Extent:** January 2019 - September 2024
- **Exog. vars:** load pred; wind/solar generation pred; calendar (sin-cos)
- **Test sets:** 1/10/2023 -30/9/2024
- **Validation:** previous year for hypertuning, 20% for early stopping
- **Conditioning:** day-ahead exog + d-1,d-2,d-7 hourly prices => 147 feat

147*24*4 = 14000 NNs under conventional feature-wise NAM setup

Experiments setup

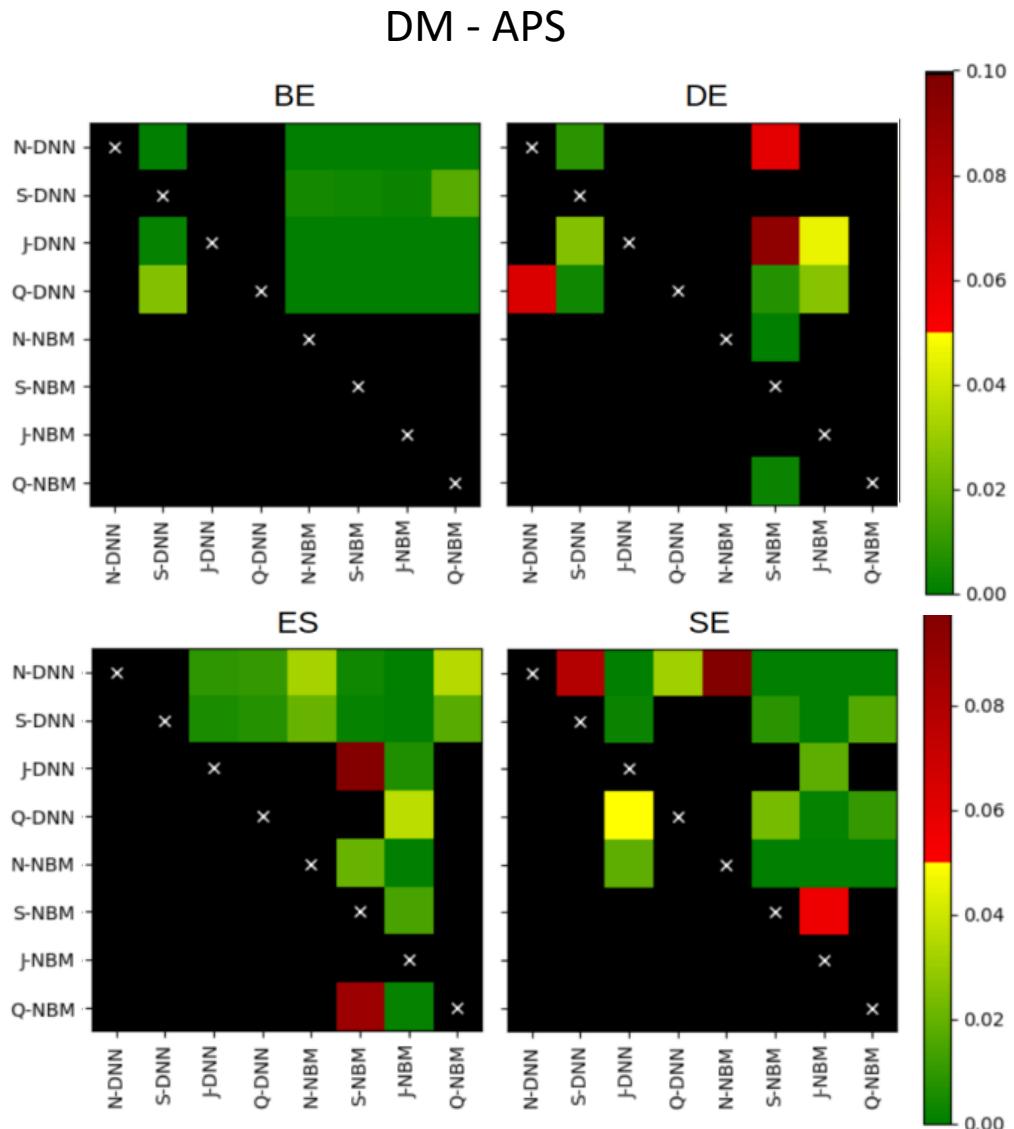
Baselines: D-DNN (N, JSU, STU), Q-DNN

Consistent training/hypertuning:

- **Learning:** Adam, max 800 epochs, patience 20, batch size 32
- **Hyperparam** search by Optuna

N-DNN	BE	DE	ES	SE
n_u	512	768	640	768
l_r	1e-3	5e-5	1e-3	1e-3
d_r	0.3	0.3	0.3	0.3
S-DNN	BE	DE	ES	SE
n_u	768	640	640	512
l_r	1e-4	1e-4	5e-4	1e-3
d_r	0.3	0.1	0.5	0.3
J-DNN	BE	DE	ES	SE
n_u	768	512	640	762
l_r	5e-4	5e-4	1e-4	1e-4
d_r	0.3	0.3	0.3	0.3
Q-DNN	BE	DE	ES	SE
n_u	128	640	512	128
l_r	5e-4	1e-4	5e-4	1e-3
d_r	0.1	0.1	0.1	0.3
N-NBM	BE	DE	ES	SE
n_u	256	128	64	256
l_r	5e-4	5e-4	5e-4	1e-4
d_r	0.5	0.5	0.3	0.3
S-NBM	BE	DE	ES	SE
n_u	128	64	128	128
l_r	5e-4	5e-4	1e-4	1e-4
d_r	0.5	0.1	0.5	0.1
J-NBM	BE	DE	ES	SE
n_u	128	64	32	64
l_r	5e-4	1e-4	5e-4	5e-4
d_r	0.5	0.3	0.3	0.1
Q-NBM	BE	DE	ES	SE
n_u	64	64	64	32
l_r	5e-4	5e-4	5e-4	1e-4
d_r	0.3	0.1	0.3	0.1

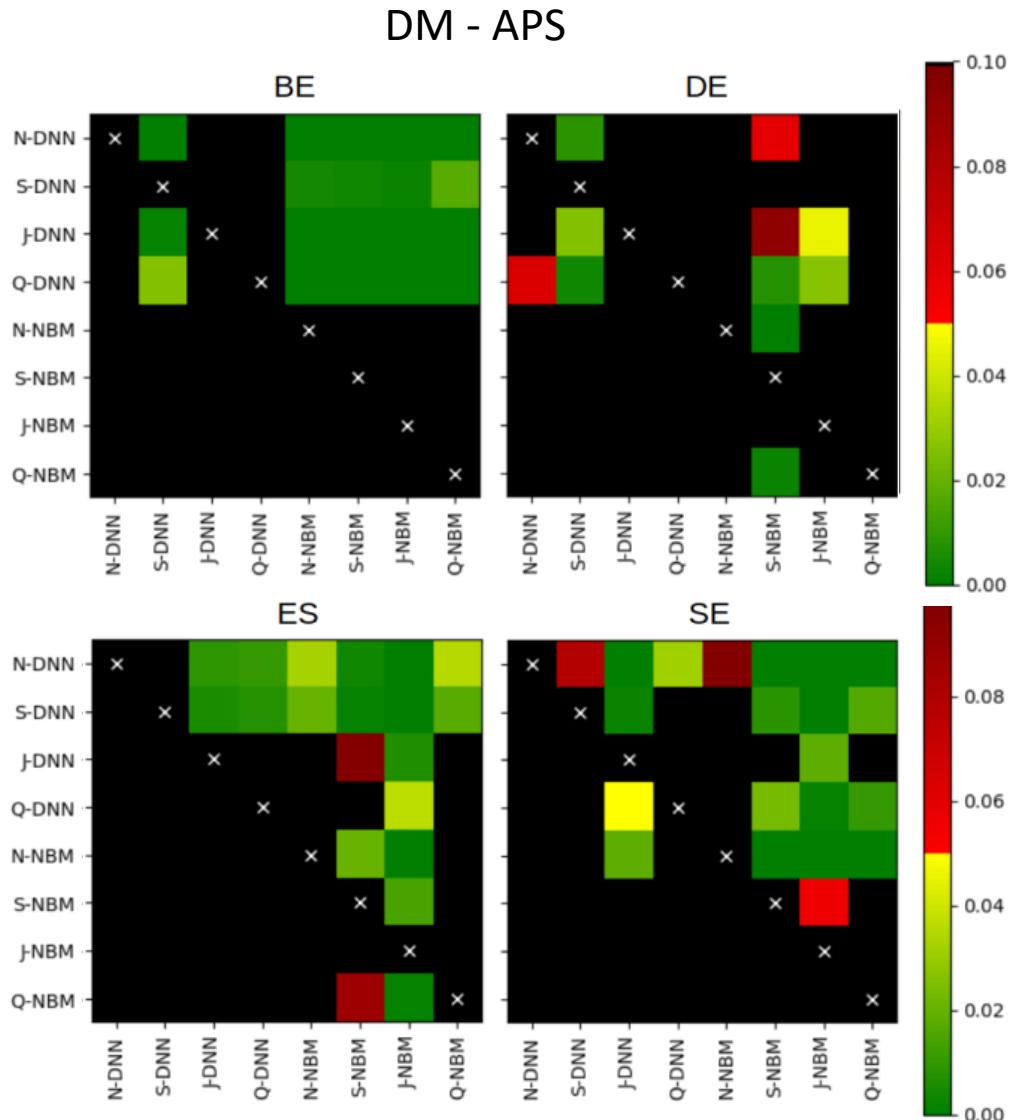
Test set results



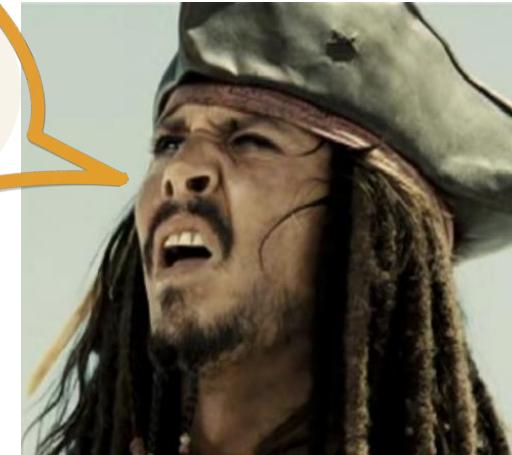
APS	BE	DE	ES	SE
N-DNN	4.860	3.785	4.318	4.351
S-DNN	4.776	3.727	4.350	4.280
J-DNN	4.847	3.809	4.253	4.151
Q-DNN	4.863	3.858	4.225	4.236
N-NBM	4.634	3.787	4.225	4.279
S-NBM	4.632	3.711	4.188	4.097
J-NBM	4.644	3.728	4.137	4.035
Q-NBM	4.653	3.789	4.224	4.096

- D/Q-NBMs has achieved PF scores comparable (in some cases slightly improved) to D/Q-DNNs
- Best **distribution/quantile** form dataset specific
- Selection depending on **application** needs

Test set results



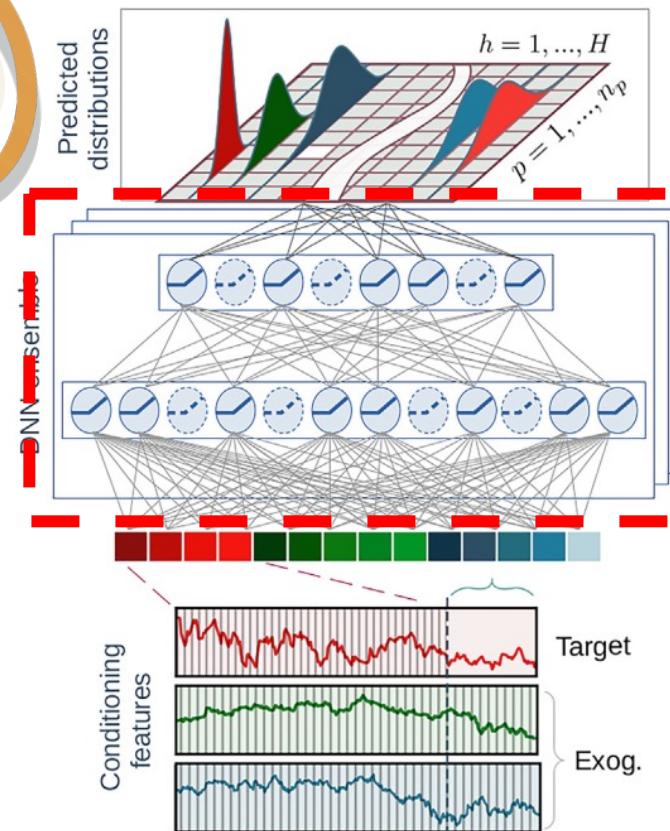
So what ??



D/Q-NBMs has achieved PF scores comparable (in some cases slightly improved) to D/Q-DNNs

From "black-box" to "glass-box" NNs

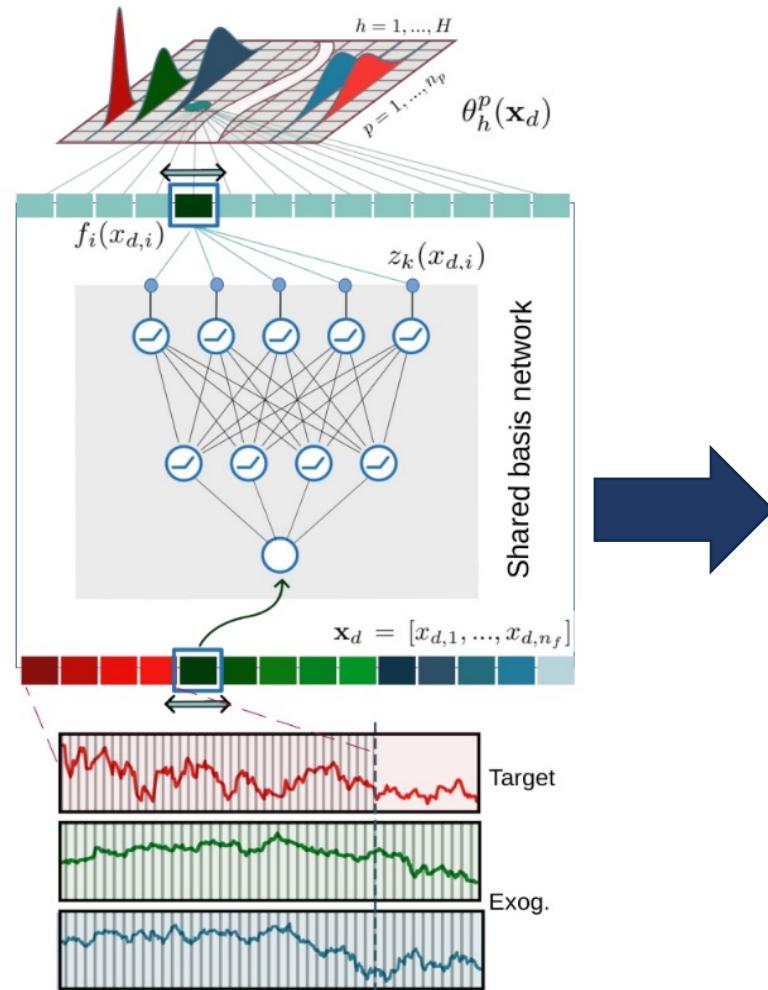
Fully black box NN



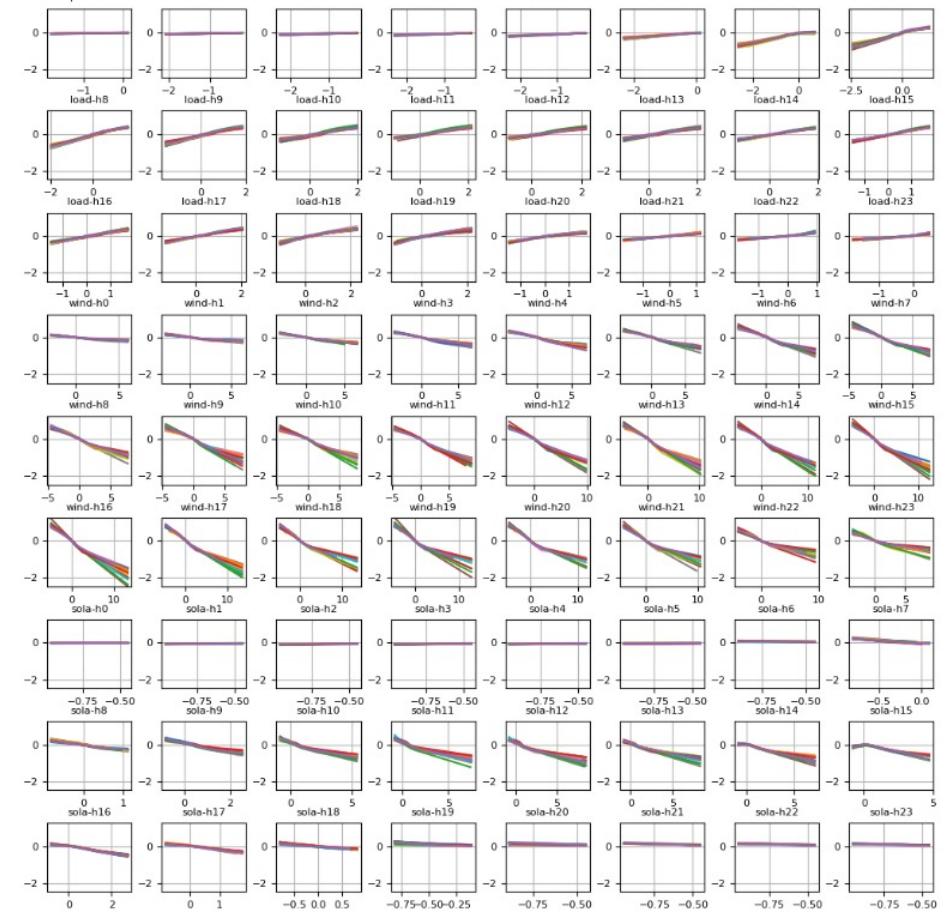
Feature-out relations
hidden within the
computational graph

Revealing identified feature shape maps

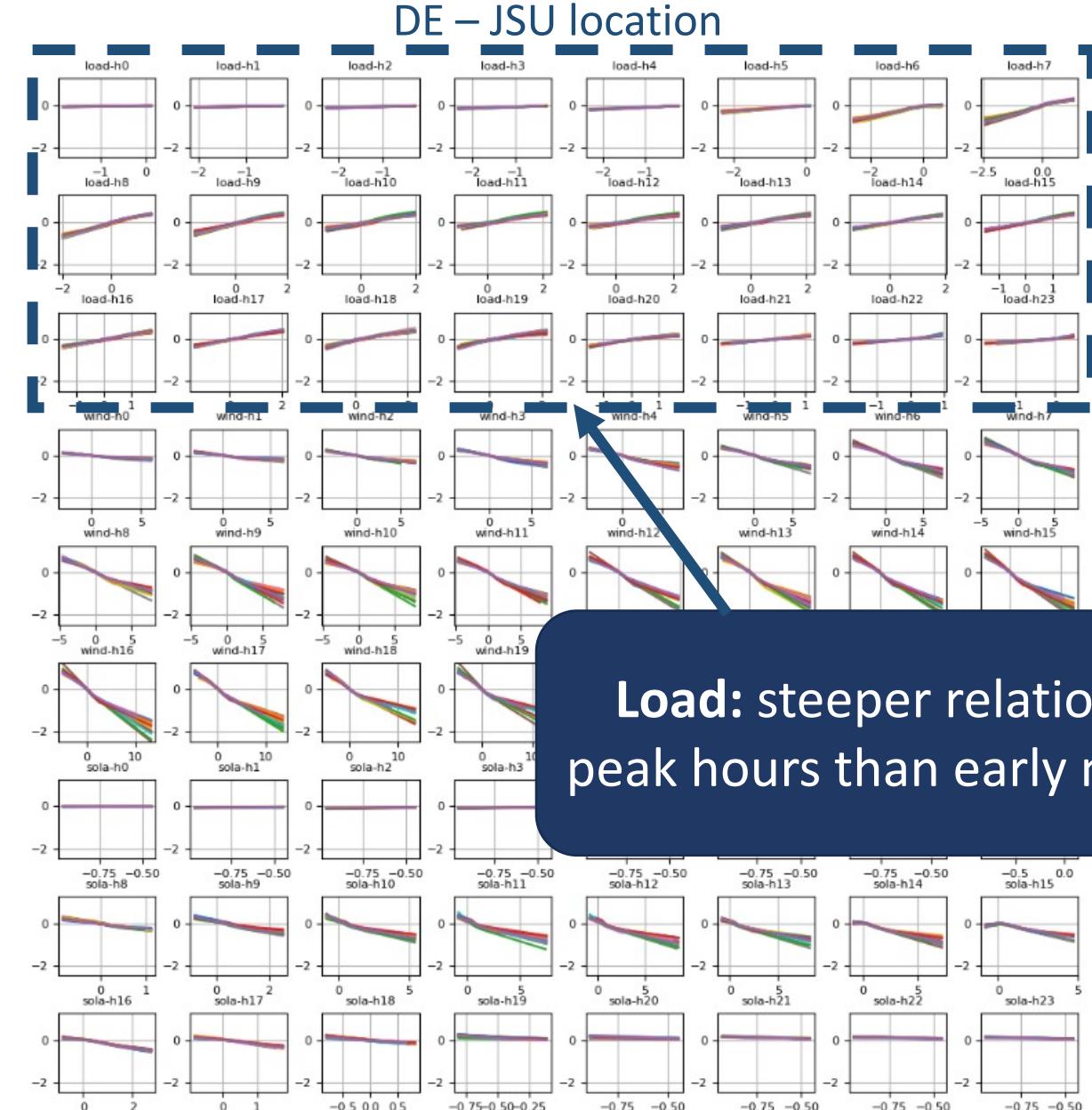
**Gaining insights into
what the NN is doing
under the hood**



Identified feature-out relations



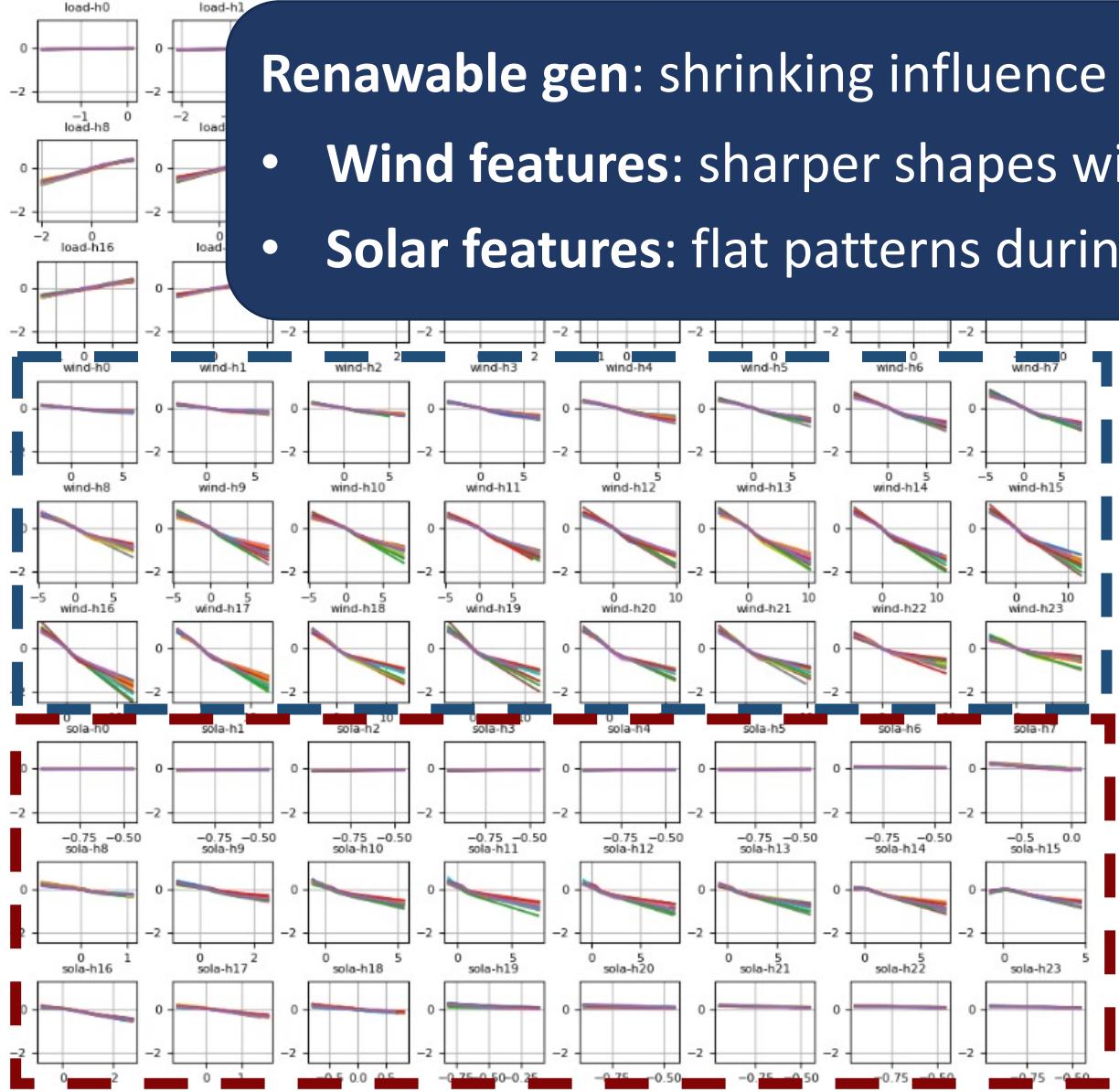
Revealing identified feature shape maps



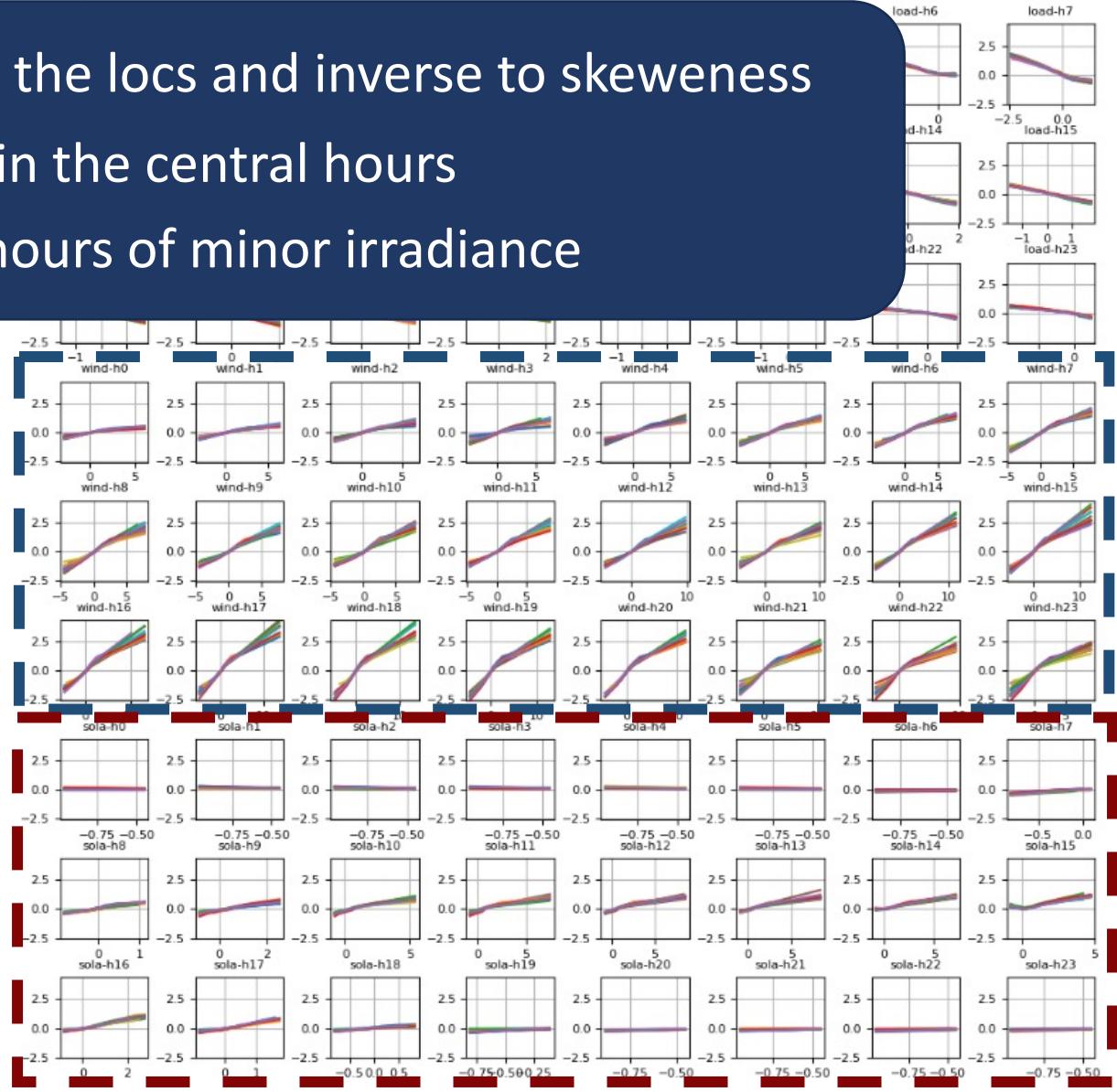
Load: steeper relations to JSU-loc in the peak hours than early morning/late evening

Revealing identified feature shape maps

DE – JSU location



DE – JSU skeweness

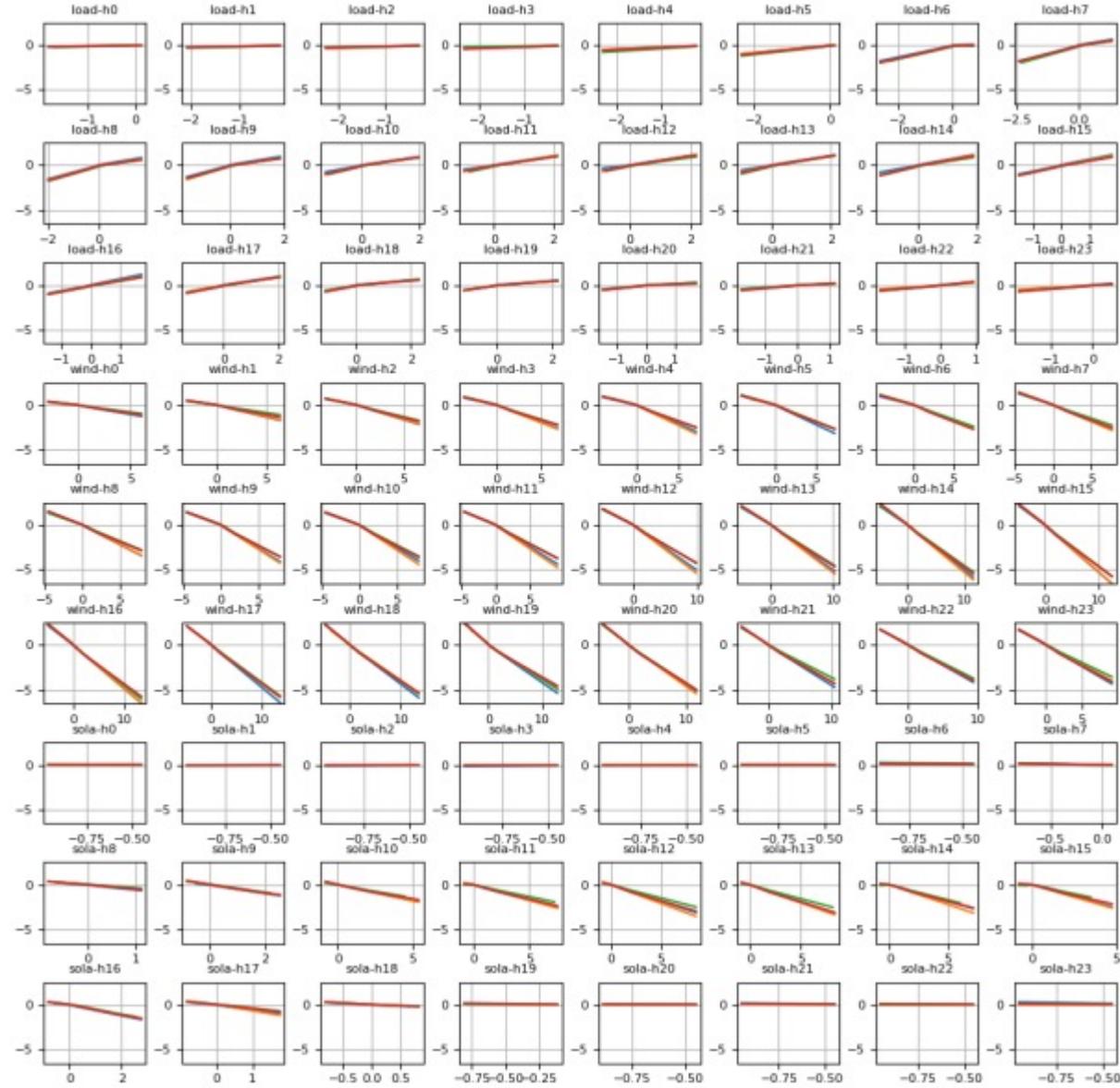


Renewable gen: shrinking influence on the locs and inverse to skeweness

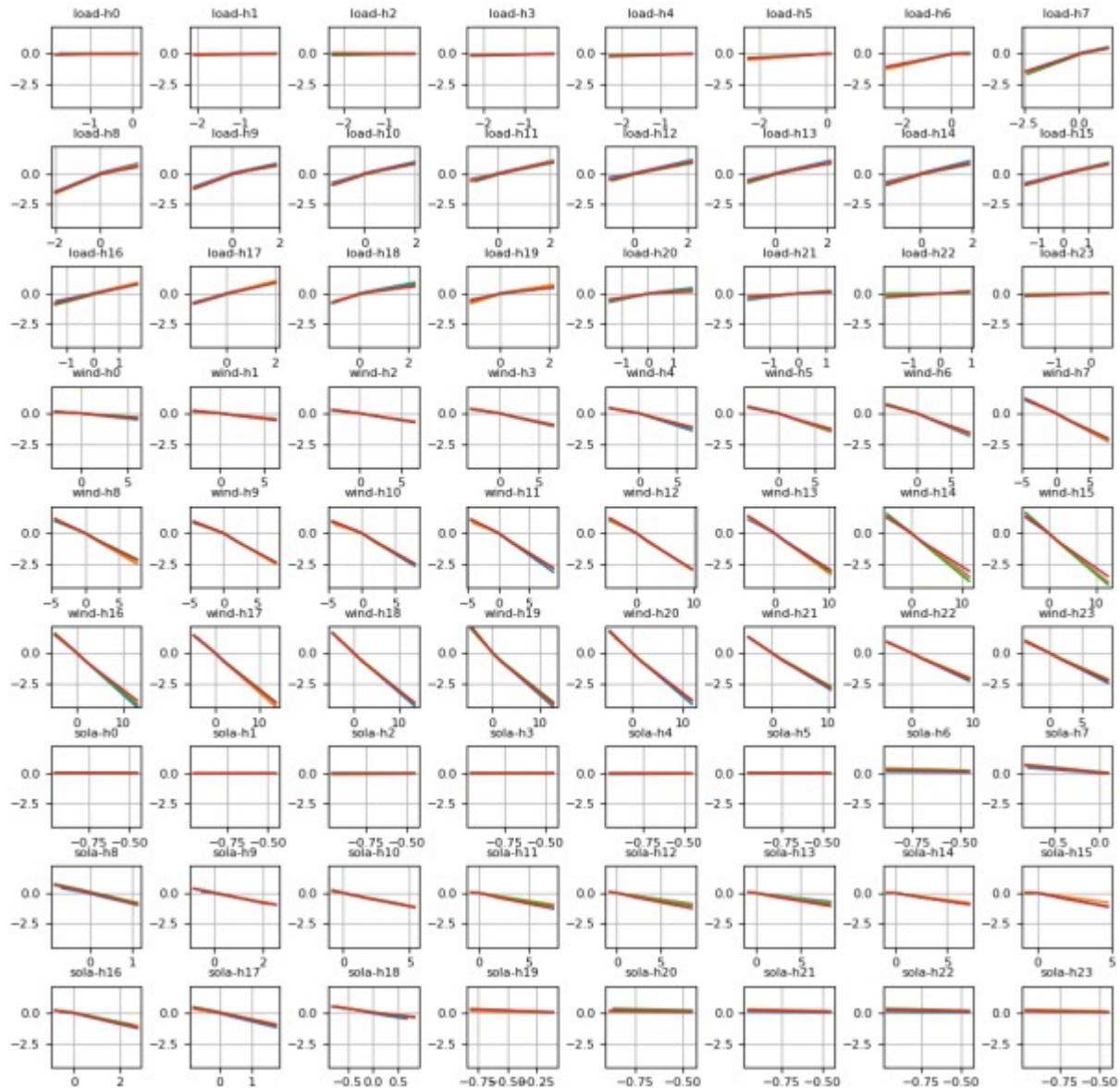
- **Wind features:** sharper shapes within the central hours
- **Solar features:** flat patterns during hours of minor irradiance

Revealing identified feature shape maps

DE – q0.05

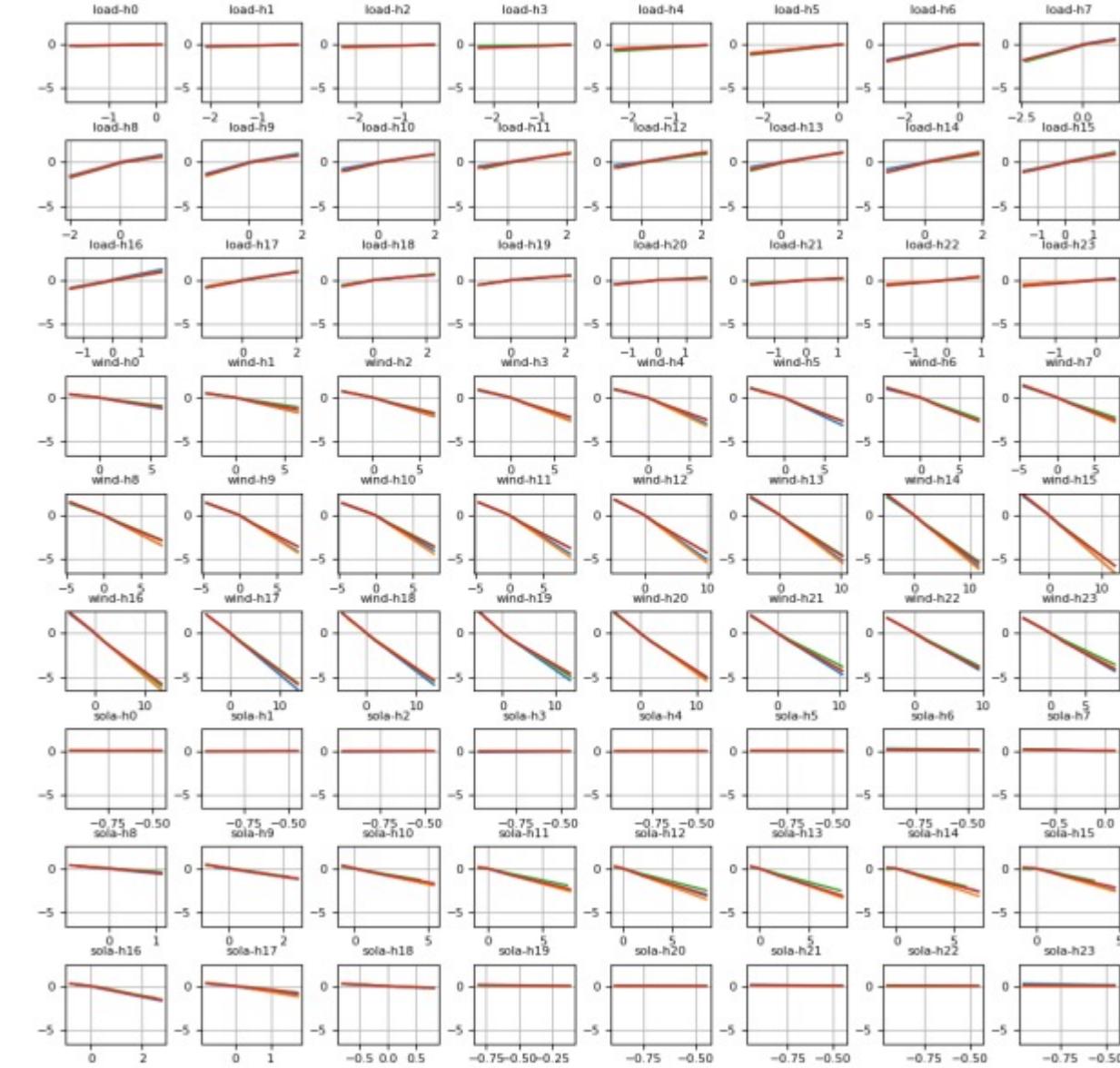


DE – q0.95

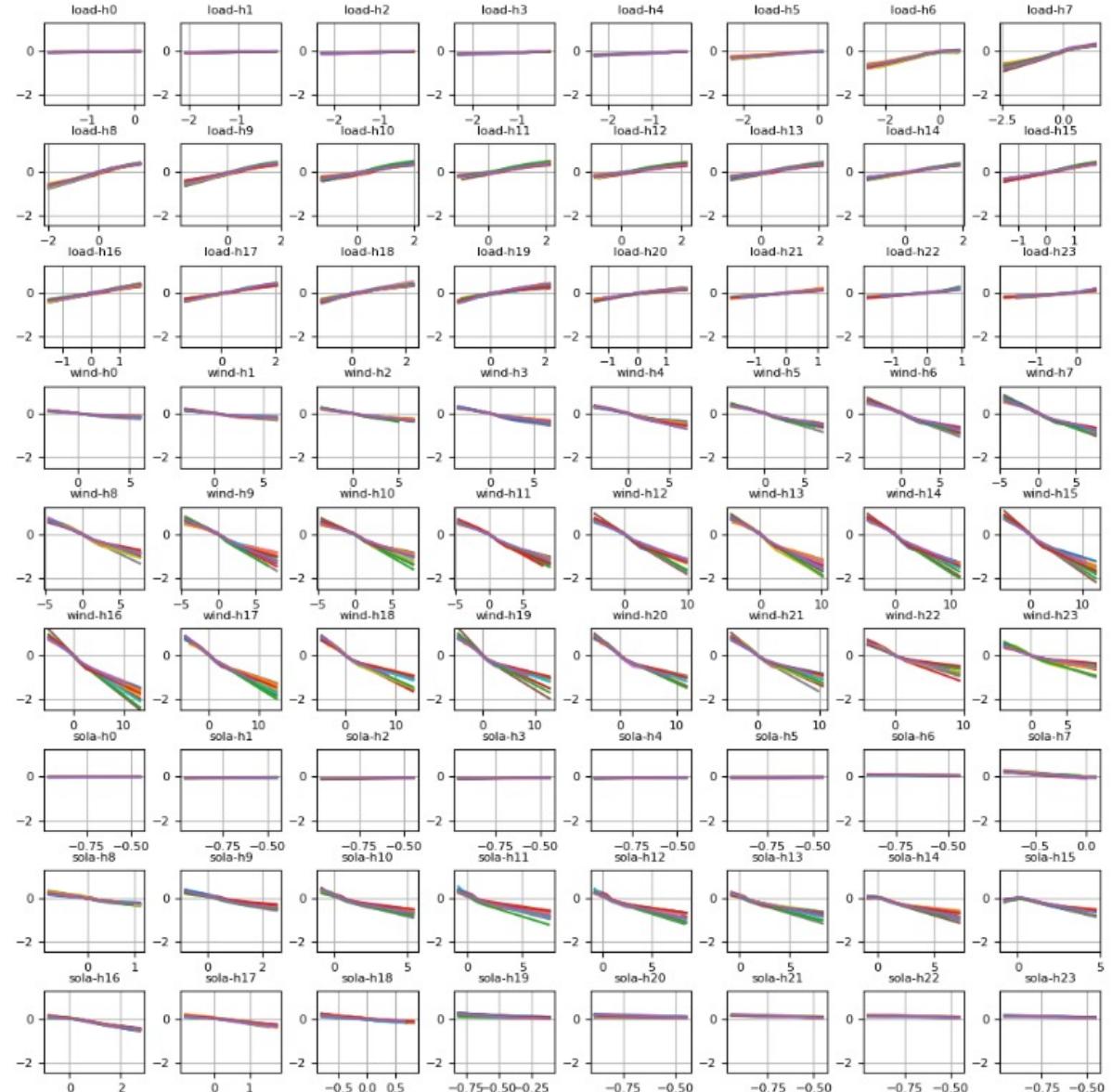


Revealing identified feature shape maps

DE – q0.05

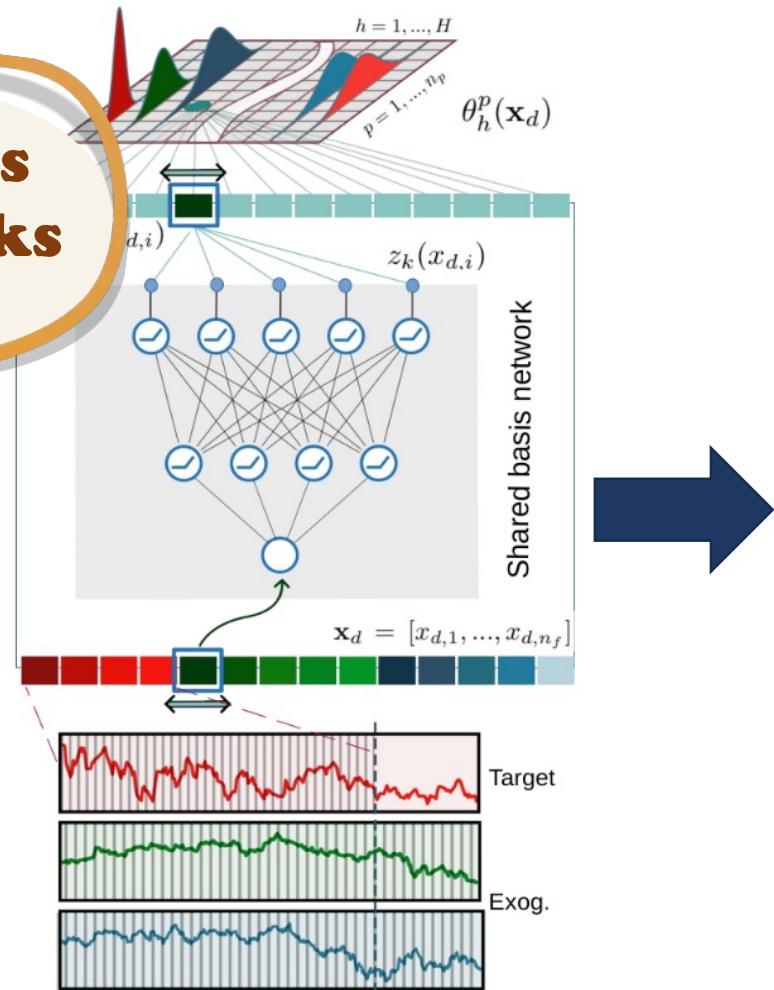


DE – JSU location

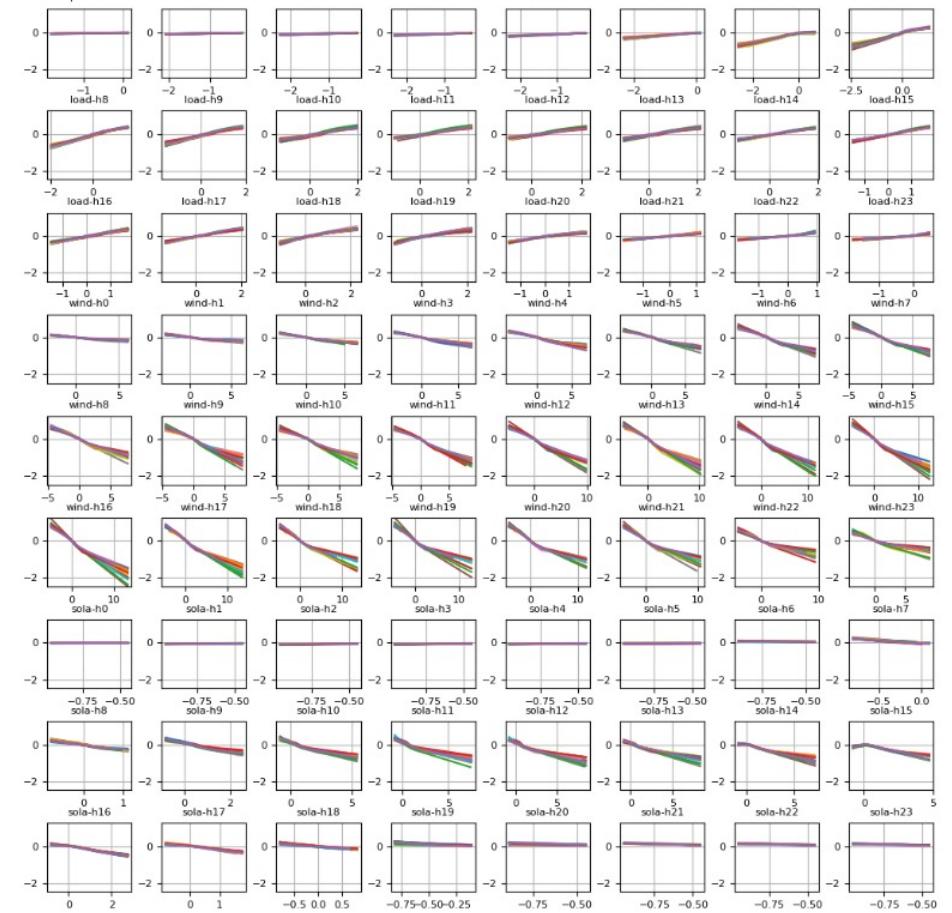


Revealing identified feature shape maps

Gaining insights into
what the NN is doing
under the hood

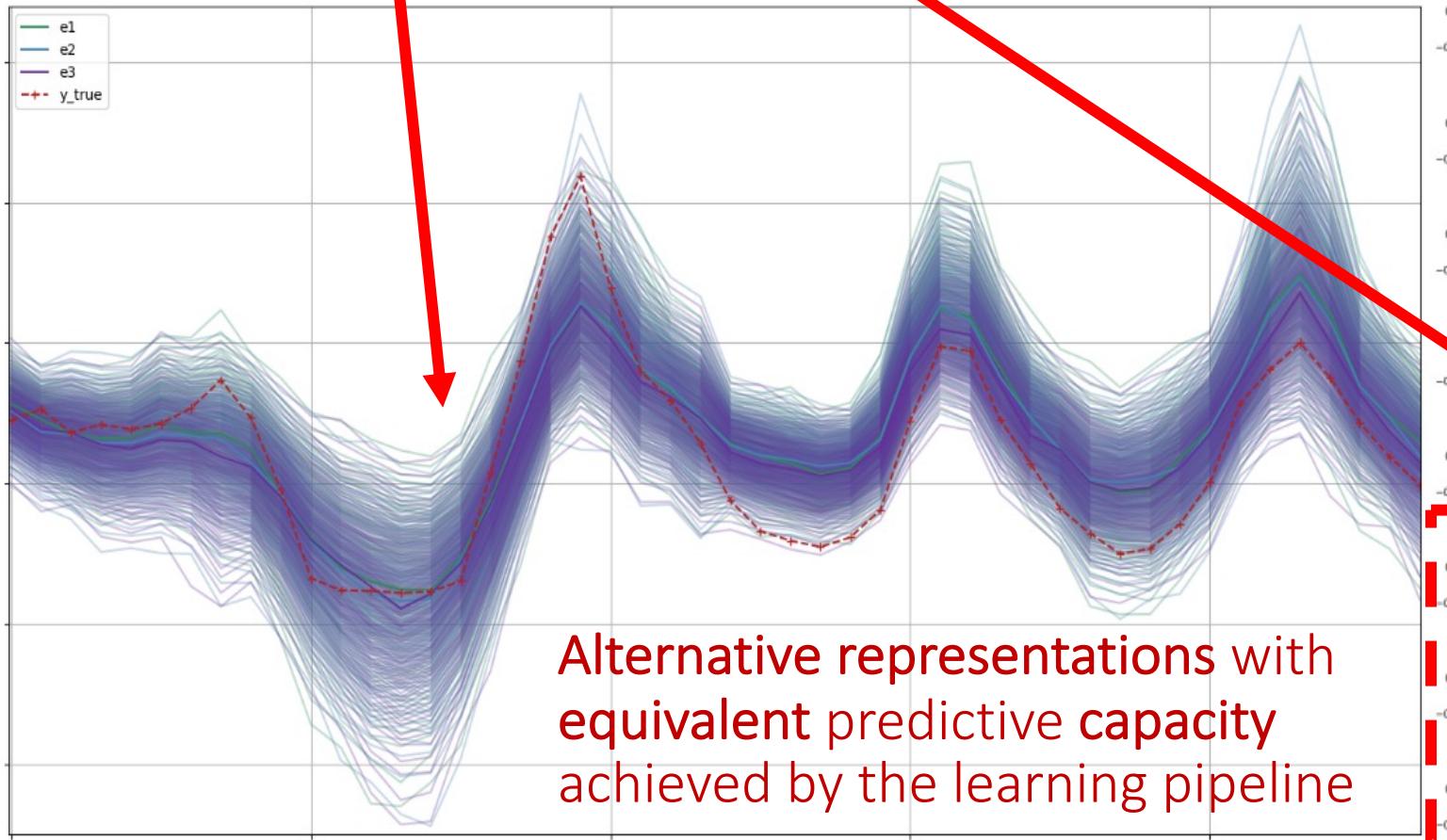


Identified feature-out relations

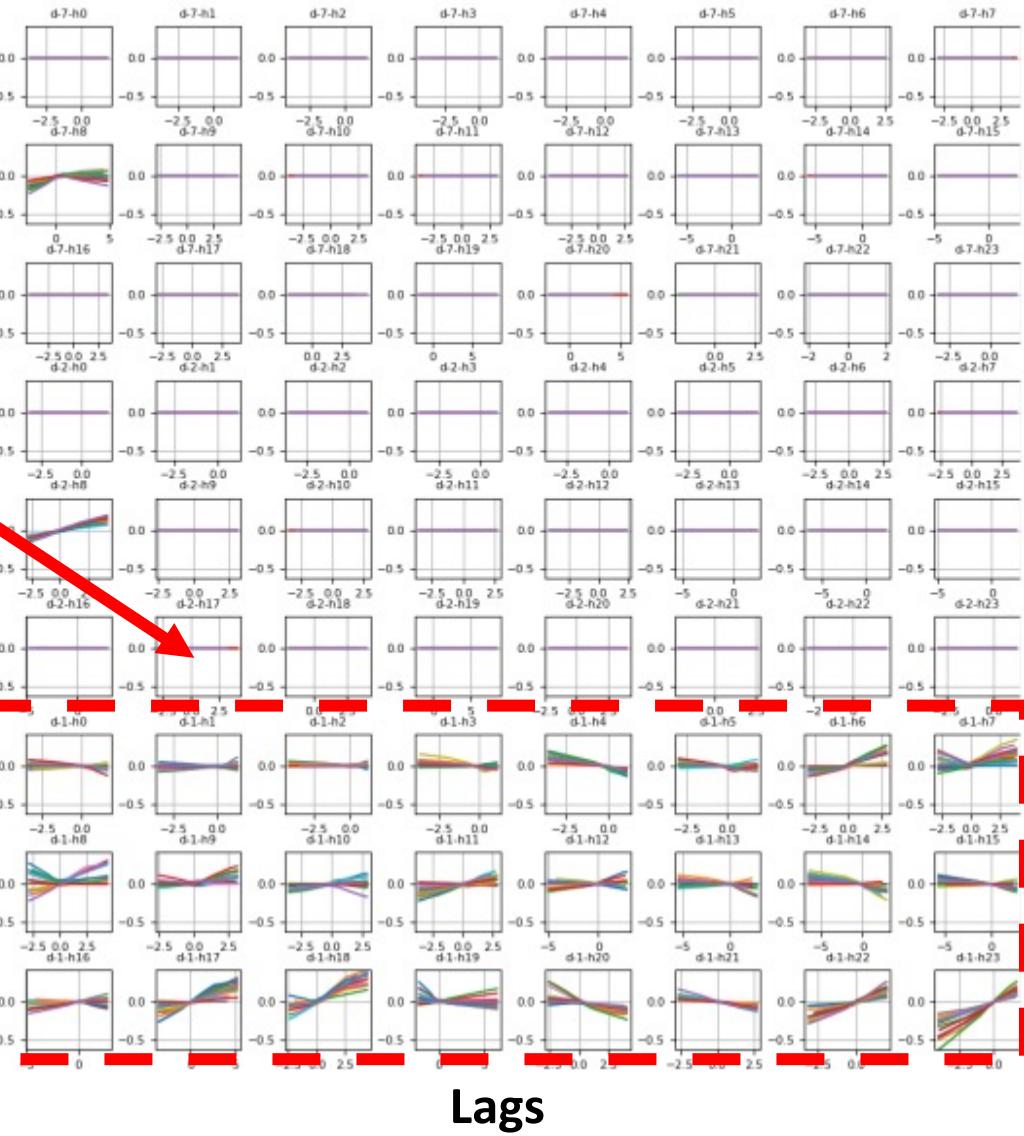


Concurrency issue

Heterogeneous feature maps
providing equal predictions

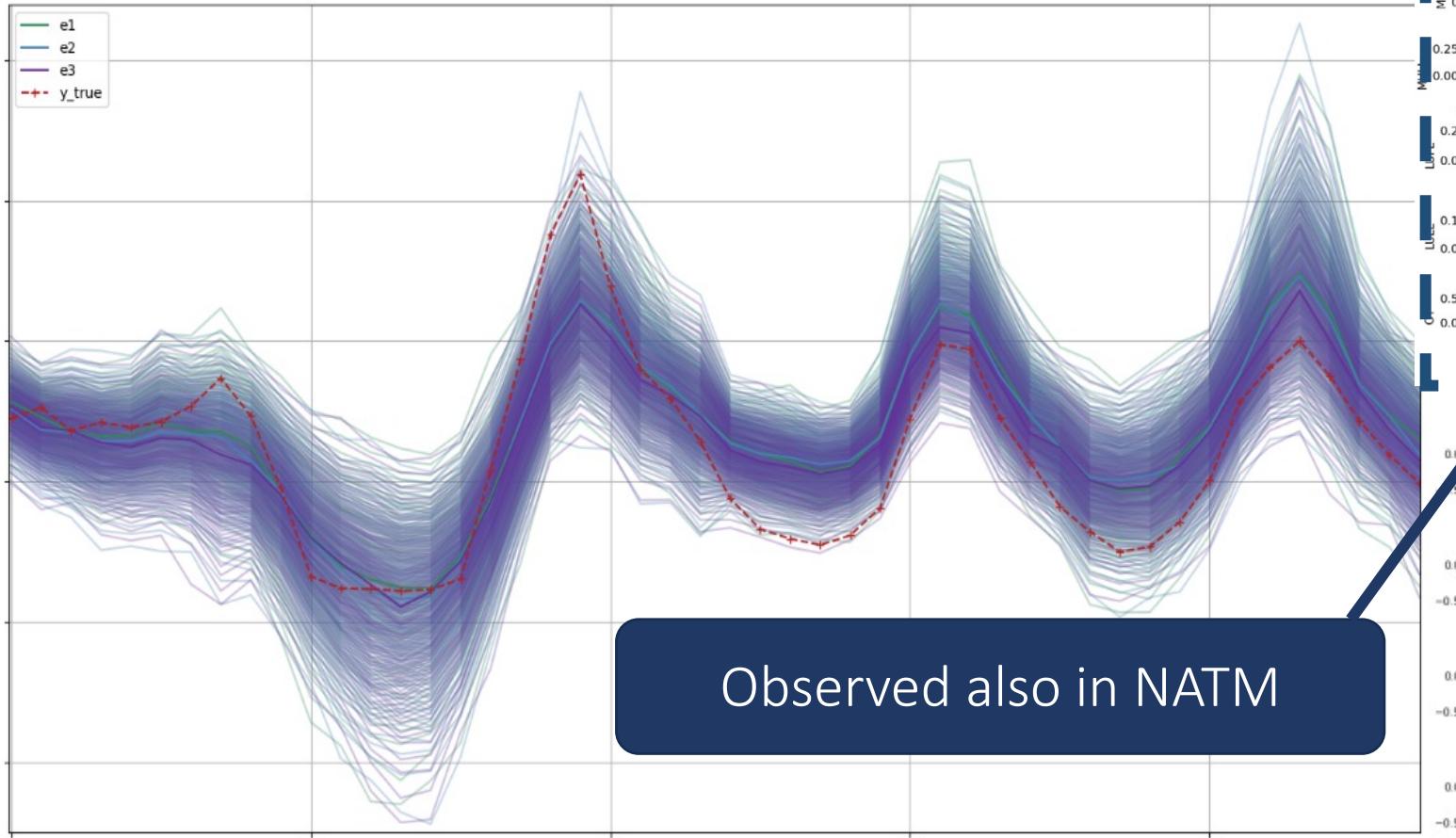
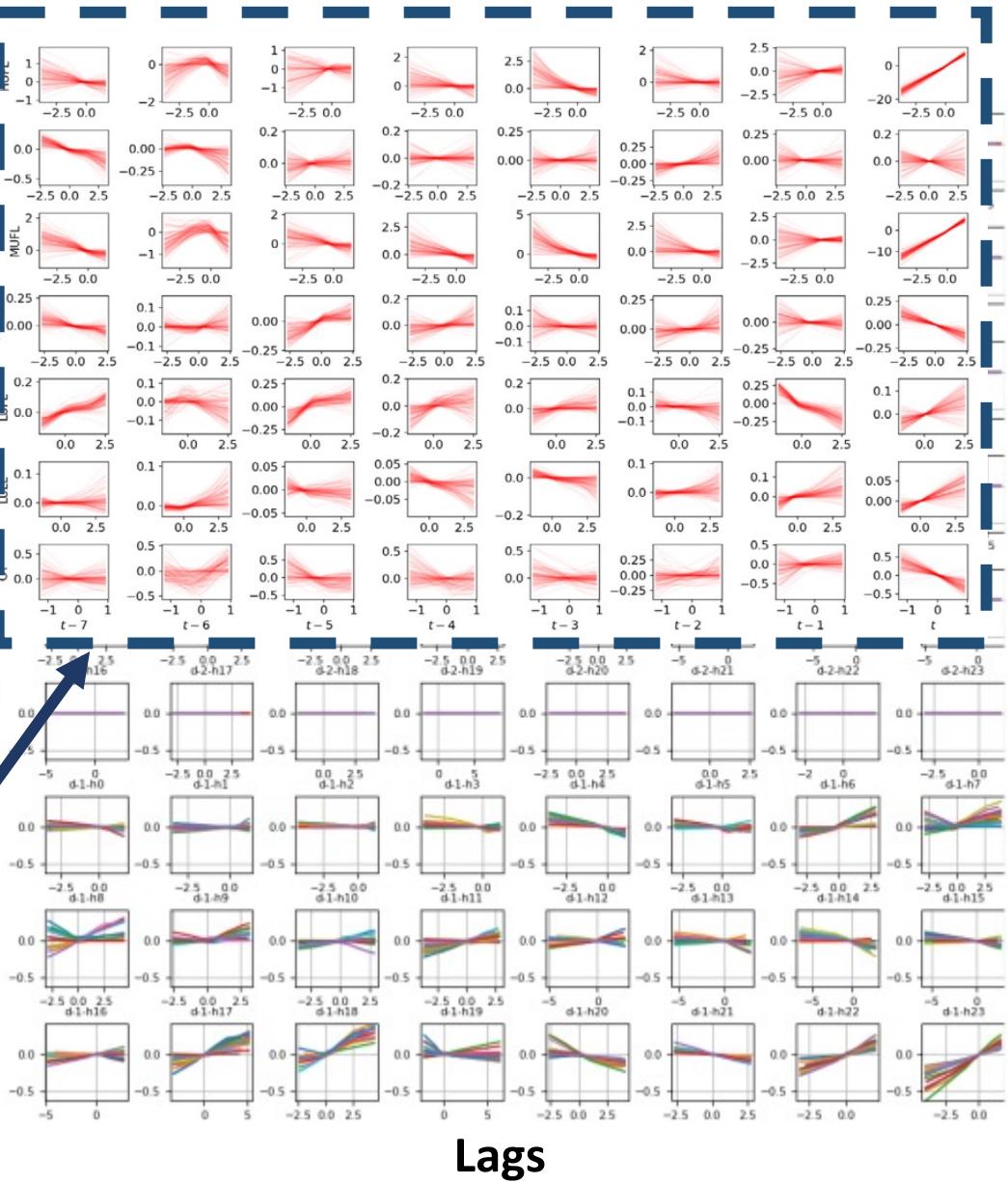


Alternative representations with
equivalent predictive capacity
achieved by the learning pipeline



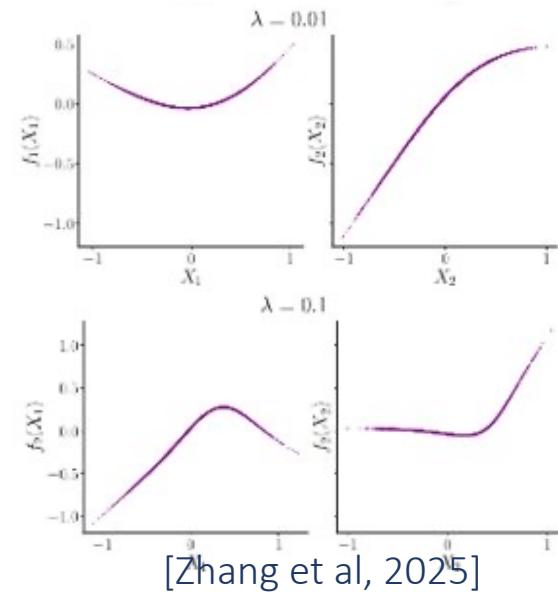
Concurrency issue

Heterogeneous feature maps
providing equal predictions



Current state

- Concurrency regularizers to enforce decorrelation
- NL shape functions dependencies still open issue
- Most practical trade-off: offering an ensemble of solutions, rather than a single candidate



[Zhang et al, 2025]

- NAMs can complement the flexibility of NNs (e.g., hybrid ensembles)
- Offering insights into the underlying feature's contribution across the domain
- Supporting NNs users during model design and assessment

Conclusions and next dev

- D/Q-NBM: NN proxy with additional **interpretability**
- Inspired by **GAMLSS/QGAM**, with TF-GPU deployment

HORIZON-CL4-24

Experiments on benchmark datasets covering multiple regions:

- Achieving PF performance **comparable to D/Q-NNs**
- Providing further **insights** into the model **behavior**

Next developments:

- Application to further PF/distributional regression tasks
- Extensions: concurrency, 2nd order interactions, features sparsity, hybrid models

References

- Marcjasz G., Narajewski M., Weron R., Ziel F., Distributional neural networks for electricity price forecasting, Energy Economics, 2023
- G Woo, C Liu, A Kumar, C Xiong, S Savarese, D Sahoo, Unified Training of Universal Time Series Forecasting Transformers, ICML, 2024
- A Brusaferri, A Ballarino, L Grossi, F Laurini, On-line conformalized neural networks ensembles for probabilistic forecasting of day-ahead electricity prices, Applied Energy, 2025
- R. Agarwal, L. Melnick, N. Frosst, X. Zhang, B. Lengerich, R. Caruana, G. E. Hinton, Neural additive models: interpretable machine learning with neural nets, NIPS, 2021
- A. Thielmann, R.-M. Kruse, T. Kneib, B. Säfken, Neural additive models for location scale and shape: A framework for interpretable neural regression beyond the mean, PMLR, 2024
- S Hirsch, J Berrisch, F Ziel, Online Distributional Regression, arXiv, 2024
- W Jo, D Kim, Neural additive time-series models: Explainable deep learning for multivariate time-series prediction, Expert systems with applications, 2023
- L. Feddersen, C. Cleophas, Hierarchical Neural Additive Models for Interpretable Demand Forecasts, arXiv 2024
- F Radenovic, A Dubey, D Mahajan, Neural basis models for interpretability, NIPS, 2022
- T Kim, J Kim, Y Tae, C Park, JH Choi, J Choo, Reversible Instance Normalization for Accurate Time-Series Forecasting against Distribution Shift, ICLR, 2022
- K. Aliyon, J. Ritvanen, Deep learning-based electricity price forecasting: Findings on price predictability and european electricity markets, Energy, 2024
- J.N. Siems, K. Ditschuneit, W. Ripken, A. Lindborg, M. Schambach, J. Otterbach, M. Genzel, Curve your Enthusiasm: Concurvity Regularization in Differentiable Generalized Additive Models, ICML2023
- X. Zhang , J. Martinelli, S.T. John, Challenges in interpretability of additive models, arXiv, 2025

Thanks

Consiglio Nazionale
delle Ricerche

Contact: alessandro.brusaferri@cnr.it

www.linkedin.com/in/alessandro-brusaferri-a9548933/