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From Distributional to Quantile Neural Basis Models:
the case of Electricity Price Forecasting
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Context and challenges
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Neural probabilistic forecasting

* Focus: Distributional/QR-neural networks for probabilistic forecasting
([Marcjasz et al, 2023], [Woo et al 2024], [Brusaferri et al 2025],...)

* Leverage NNs to parameterize flexible conditional densities/quantiles
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XAl challenge

e XAl challenge: NNs flexible but inherently black box

 Learned relation between input variables
and CDF parameters/quantiles hidden to the user

Goal: reveal the underlying mechanism leading to the

predicted feature-conditioned distribution param/quant




Recent "Glass-box" NNs research momentum

* NAMs class: taking inspiration from GAM design [Hinton et al, 2021]

 NAM for distributional regression [Thielmann et al, 2024]




Recent "Glass-box" NNs research momentum

* NAMs class: taking inspiration from GAM design [Hinton et al, 2021]

 NAM for distributional regression [Thielmann et al, 2024]

e Still understudied in probabilistic forecasting (PF) context

 Explored for point forecasting by [Jo, 2023][Feddersen, 2024]

* NAMs challenging scalability to real world PF applications



Computationally intensive for PF implementation
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A NN for each stage-wise input/density param map

e e.g.,:H=24, |X|=100 --> 2400 NNs (with param sharing)

 Typically recalibrated in PEPF apps (+ ensembling)

e Still computationally "intensive" for target PEPF tasks



From NAM to D/Q-NBM

NN inspired by GAMLSS/QGAM for PF
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From NAMs to D/Q-NBM

sainjed) induj

Leveraging basis decomposition of shape functions [Radenovic et al, 2022]

Learn a set of shared latent features in a multi-step PEPF setup

Exploit a cheap unique NN for the different feature-output maps

Combined by affine projections supporting dedicated step-wise and
param/quantile-wise feature shape functions aggregations

Set of NNs to learn each
input-param mapping

Latent features identified

by each NN individually

Exploit the NN flexibility to

learn a shared features set
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D/Q-NBM architecture (in math)
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Major ingredients:

e Last hidden layer operates as
"shared basis" functions

* Shared basis aggregated in
input-specific shape functions

* Shape functions combined in
stage-wise parameterization

e Stage-wise link function

e Link fun. parameterizations
Step-wise distrib. (e.g., JSU)
Quantile mapping/loss

e Basis dropout

e Low-rank factorization for
scalable mapping




D/Q-NBM as NN building bloc

class DQNBMRegressor:
def init__ (self, settings, loss):

self.settings = settings
self.settings['add_res'] = False
self.__build_model__(loss)
self.loss = loss

X . , . . . 2
"( 1) def build_logit__ (self, x_in, out_size): ° Tralned multl_step’ end_to_end

def concat_with_batch_size(inputs):

< > ti1, t2 = inputs
[ baten_size = tf.shape(t1)[0] * 1NN by tensor broadcasting
fi(xai) t2 = tf.tile(t2, [batch_size, 1, 1])
:/\'(-1'41.1) return tf.concat([t1, t2], axis=-1) .
o * Easy auto build from settings
6 if self.settings['basis_mode'] == 'full':
E # [B,nf] --> [B,1,1,nT]
[ / N % Q x_b = tf.expand_dims(x_in, axis=1)
TS D@ = x_b = tf.expand_dims(x_b, axis=1)
) (A4 gg [B,1,1,nf] --> [B,h,p,nf]
@ @ @ @ 8 x_b = tf.tile(x_b, [1, self.settings['pred_horiz'], self.out_size, 1])
[B,h,p,nf] --> [B,h,p,nf,1]
©
@ x_b = tf.expand_dims(x_b, axis=-1) e PureTF (Torch) Code
© [B,h,p,nf] --> [B,h,p,nf,nh]
K o=
1))

Xx_b = tf.keras.layers.Dense(self.settings['hidden_size'],

activation=self.settings['activation'], L4 GPU/TPU ready

r 3 name="'10-basis"')(x_b)
Xd = |Td,1yey .I',l‘,,", |

EEe EEE. ., | « Composable in pipeline
=

logit = self.__build_logit__ (x_in=x_in, out_size=self.out_size)

output = tfp.layers.DistributionLambda(

* Multimodel ensembles, etc

Targel lambda 1: tfp.distributions.TransformedDistribution(
distribution=tfd.StudentT(

; loc=1[0][..., :self.settings['pred_horiz']],
scale=le-3 + 3*tf.math.softplus(1[@][...,self.settings['pred_horiz']:self.settings['pred_horiz']
! df=1 + 3*tf.math.softplus(1[@][..., self.settings['pred_horiz'] * 2:])),

EXOQ' bijector=tfp.bijectors.Chain([tfp.bijectors.Shift(shift=1[2]),tfp.bijectors.Scale(scale=1[1])])) I @
| )([logit, target_scales_ex[:,0],target_locs_ex[:,0]])
|
. elif self.settings['PF_method'] == 'qr':

self.out_size = len(self.settings['target_quantiles'])
logit = self.__build_logit__ (x_in=x_in, out_size=self.out_size)




EPF experiments
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Open benchmark structured by [Aliyon et al 2024]: ents 0@

Transparency Platform

* Regions: Germany, Belgium, Spain, Sweden-Stockholm (SE3)

e Extent: January 2019 - September 2024

* Exog. vars: load pred; wind/solar generation pred; calendar (sin-cos)
* Testsets: 1/10/2023 -30/9/2024

* \Validation: previous year for hypertuning, 20% for early stopping

e Conditioning: day-ahead exog + d-1,d-2,d-7 hourly prices => 147 feat

147*24*4 = 14000 NNs under conventional feature-wise NAM setup




Experiments setup

N-DNN BE DE ES SE N-NBM BE DE ES SE

Baselines: D-DNN (N, JSU, STU), Q-DNN ™ e ol e " wo e e
l, le-3 5e5 led le-3 l, 5e-4 Se-d BSe-d led

d, 0.3 03 03 0.3 d, 0.5 05 03 0.3

S-DNN BE DE ES SE S-NBM BE DE ES SE

Consistent training/hype rtuning: nu 768 640 640 512 nu 128 64 128 128
l, led led 5ed  le-3 l, 5e-4 Se-d le-d led

° Learning: Adam, max 800 epOChS, d, 0.3 01 05 0.3 d, 0.5 01 05 0.1
: : JJDNN BE DE ES SE JJNBM BE DE ES SE
patlence 20’ batch size 32 nu 768 512 640 762 - 128 64 32 64
l, 5e-4 Se-d led le-d l, 5e-4 led BSed BSed

* Hyperparam search by Optuna " 03 03 03 03 d 05 03 03 0.1
Q-DNN BE DE ES SE Q-NBM BE DE ES SE

nu 128 640 512 128 - 64 64 64 32

l, H5e-4  le-d  He-4  le-3 l, H5e-4  He-4d  He-4 le-4
dy 0.1 0.1 0.1 0.3 dy 0.3 0.1 0.3 0.1




Test set results
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N-DNN  4.860 3.785 4.318 4.351
S-DNN  4.776 3.727 4.350 4.280
J-DNN 4847 3809 4253 4.151
Q-DNN  4.863 3.858 4.225 4.236
N-NBM  4.634 3.787 4.225 4.279
S-NBM [4.632,3.711; 4.188 4.097

J-NBM  4.644
Q-NBM  4.653

|

r= "1

3.728 4.137; 14.035)

3.789 4.224 4.096

 D/Q-NBMs has achieved PF scores comparable
(in some cases slightly improved) to D/Q-DNNs

* Best distribution/quantile form dataset specific

» Selection depending on application needs



Test set results
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some cases slightly improved) to D/Q-DNNs



From "black-box" to "glass-box" NNs
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Revealing identified feature shape maps

|dentified feature-out relations
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Revealing identified feature shape maps

DE — JSU location DE — JSU skeweness
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Revealing identified feature shape maps

DE — JSU location DE — JSU skeweness

|| Bl Renawable gen: shrinking influence on the locs and inverse to skeweness ‘;:i\‘

B ° Wind features: sharper shapes within the central hours ]

T T

* Solar features: flat patterns during hours of minor irradiance -
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Revealing identified feature shape maps

DE — q0.05 DE — q0.95
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Revealing identified feature shape maps

DE —g0.05 DE —JSU location
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Revealing identified feature shape maps

h=1,...H

|dentified feature-out relations
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Concurvity Issue

Heterogeneous feature maps [ e o o O O
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Current state

| |
. . . ‘ \/ .
e Concurvity regularizers to enforce decorrelation z ) :

* NL shape functions dependencies still open issue

* Most practical trade-off: offering an ensemble of o~ |/
solutions, rather than a single candidate : ; ﬁ ;

[Zhang et al, 202‘5]

* NAMs can complement the flexibility of NNs (e.g., hybrid ensembles)
e Offering insights into the underlying feature’s contribution across the domain

e Supporting NNs users during model design and assessment



Conclusions and next dev

 D/Q-NBM: NN proxy with additional interpretability

* Inspired by GAMLSS/QGAM, with TF-GPU deployment o

)
=0

Experiments on benchmark datasets covering multiple regions: jgjil\oﬁ:
nd BS ? e 9.;.:
o Achieving PF performance comparable to D/Q-NNs T I Y

MEDUSA

o Providing further insights into the model behavior

Next developments:

* Application to further PF/distributional regression tasks

 Extensions: concurvity, 2nd order interactions, features sparsity, hybrid models
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