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⊡ For Market Participants: Enhanced Profitability & Risk Management 
► Optimal Bidding Strategies 
► Mitigated Financial Risk 
► Informed Investment 

⊡ For Grid & Market Operations: Improved Stability & Efficiency 
► Grid Reliability & Security 
► Efficient Market Operations 
► Renewable Energy Integration 

Electricity Price Forecasting (EPF): Interest
Motivation



 Bridging Fundamental model with the econometric approach for electricity price forecasting

⊡ Non-storable, so supply and demand must balance instantly, causing sharp 

price movements. 
⊡ Prices are highly volatile, with frequent spikes and even negative prices. 
⊡ Renewable generation is weather-dependent, making forecasts uncertain 

and less predictable. 
⊡ Market dynamics are complex and nonlinear, driven by many interacting 

factors like fuel prices, load, and grid constraints.

3Motivation

Electricity prices: Features
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Electricity Market design in Europe

Forward and Future Market Day-ahead
Market

Intraday
Market

Imbalance
settlement

Spot Market

Balancing market - Procurement of Reserves

TimeYears, months, weeks and days before 
delivery

Day before delivery Delivery day

Delivery 
Time

Settlement 
period 
30 min

Balancing market 
settlement side

Different types of electricity markets regarding their time dimension 
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Day Ahead Market

On day , agents must submit their bids and offers for the delivery of electricity during each hour of day d − 1 d

Time
/hour

24 hours of
Day d-2

24 hours of
Day d

1h 24h

Bidding for
day d-1

Bidding for 
day d

24 hours of
Day d-1 



 Bridging Fundamental model with the econometric approach for electricity price forecasting

6Motivation

⊡ Take into consideration the statistical characteristics related to the 
electricity market: high volatility, long memory behaviour,..  

⊡ Captures the revealed behavioural aspects of market participants, 
such as strategic and speculative behaviour 

⊡ Not able to fully incorporate market dynamic and operations into 
their forecasts. 

⊡ Rely on the assumption that history repeats itself. 

Econometric model
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⊡ Market clearing price is estimated using fundamental models, 
⊡ Model the power market by including all generation technologies
⊡ Includes information related to renewable energy, demand and supply,.. 
⊡ The generation units, technical features including the production cost 
⊡ Poor performance in capturing the short term price dynamics,.. 

Fundamental model
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⊡ The capability to consider the most relevant, economic drivers of 
electricity market prices 

⊡ Fundamentals: supply, demand, unit commitment, dispatch, and 
technical constraints.  

⊡ Econometrics: linear/non-linear modelling capabilities,…
⊡ The behaviour and operation of the power market are successfully 

incorporated to the electricity price forecasts, 
⊡ Great interest for market participants.

Bridging Fundamental and econometrics models



Outline
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1. Motivation ✔  
2. Fundamental models 
3. Econometrics models 
4. Results and Interpretation 
5. Closing remarks 
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Fundamental Model
⊡ em.power dispatch model 
⊡ The objective function minimises total system costs:

min TC = ∑
i,n,t

Gi,n,t vcFL
i,n,t

fuel and variable operating costs

+ ∑
i,n,t

SUi,n,t sci,n,t

start-up costs

+ ∑
i,n,t

(Pon
i,n,t − Gi,n,t) (vcML

i,n,t − vcFL
i,n,t)

gmin
i

1 − gmin
i

part-load efficiency penalty
− ∑

stl,n,t

CLstl,n,t wvstl,n,t

water value of long-term storage

+ ∑
n,t

SHEDn,t voll

value of lost load
+ ∑

n,t

CURTres,n,t curtc

renewable curtailment cost
► Go to details

Fundamental Model
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Fundamental Model
⊡ Market clearing is ensured by:

dn,t = ∑
i

Gi,n,t

generation

− ∑
stm⊂I

CMstm,n,t

mid-term storage charging

− ∑
stl⊂I

CLstl,n,t

long-term storage charging
+ SHEDn,t

load shedding

+ ∑
nn

(FLOWnn,n,t − FLOWn,nn,t)

net imports
∀ n, nn ∈ N, t ∈ T

⊡ The demand restriction is differentiable at each point and can thus be 
interpreted as a wholesale market price estimator.

Fundamental Model
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⊡ The LEAR to predict price  on day  and hour  is: 

 

Where  are the parameters of LEAR for hour 
, estimated using LASSO: 

 

pd,h d h

pd,h = f(pd−1, pd−2, pd−3, pd−7

lagged prices

, x1
d , x1

d−1, x1
d−7

load + lags

, x2
d , x2

d−1, x2
d−7

RES + lags

,

x3
d⏟

gas

, x4
d⏟

coal

, x5
d⏟

CO2

, θh⏟
params

) + ϵd,h

θh = [θh,1, . . . , θh,247]
h

̂θh = argmin
θh

{RSS + λ θh 1} = argmin
θh

{RSS + λ
247

∑
i=1

|θh,i |}

Lasso Estimated AutoRegressive (LEAR) model 

Econometrics models 
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⊡ Lasso Estimation for , 

 is the sum of squares, 

 is the price forecast,  
 is the number of days in the training dataset, 

 is is the tuning (or regularization) hyperparameter of LASSO. 

⊡ Selecting the regularization hyperparameter: a hybrid approach   
► Estimate the hyperparameter using the LARS method with the in-

sample AIC  
► Optimal  from the LARS method, recalibrate the LEAR 

θh

RSS =
Nd

∑
d=8

(pd,h − ̂p d,h)2

̂p d,h
Nd
λ ≥ 0

λ

Lasso Estimated AutoRegressive (LEAR) model 

Econometrics models 
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Deep Neural Network (DNN)

⊡ The DNN estimated using Adam, hyperparameters and input 

features are optimized using the tree Parzen estimator

Source: Lago et al (2021)

 A hybrid system for electricity price forecasting: complexity or efficiency?

Econometrics models 
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LSTM, Hochreiter and Schmidhuber (1997) 
⊡ Overcome the vanishing gradient problem in RNN 
⊡ The information used in the transformation of the input is 

controlled by three gates: 
► One reset gate:        
► One update gate:     
► One output gate:     

► Current memory content   
Use of the reset gate to drop irrelevant information  

► Final memory at :   
Use of the update gate to learn how much information from the 
previous step will carry over the current step 

 
where  is pointwise multiplication.

rt = σ (Wrxt + Urht−1)
zt = σ(Wzxt + Uzht−1)
ot = σ (Woxt + Woht−1 + bo)

h′￼t = tanh (Wxt + rt ⊙ Uht−1)

t ht = zt ⊙ ht−1 + (1 − zt) ⊙ h′￼t

⊙
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LSTM memory block 

LSTM cell
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Data: Germany-Luxembourg Market


Results and Interpretation

1. Long enough, analyse out-of-sample datasets that span 1-2 years, 
2. Three different Test samples: before, during, and after the energy Crisis.
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2015 2017 2019 2021 2023 2025
First Train Sample First Test Sample

Second Train Sample Second Test Sample

Third Train Sample Third Test Sample

Electricity prices vs Fuel Prices (Gas, Coal and CO2) and Time series split for First 
Test Sample (2019-2020), Second Test Sample (2021- 2022), and Third Test Sample 
(2023-2024)
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Three-test samples average evaluation metrics
Model MAE RMSE sMAPE
ESM 22.808 38.457 28.046

Ens-DNN 11.206 19.752 19.990
DNN 14.267 28.565 23.286

Ens-LEAR 13.361 22.067 22.507
LEAR 14.340 23.940 22.636
LSTM 15.297 25.805 23.729

ESM–Ens-DNN + 10.582 18.455 18.839
ESM–DNN + 12.235 20.662 20.339

ESM–Ens-LEAR + 12.297 21.819 20.169
ESM–LEAR + 13.046 23.034 20.563
ESM–LSTM + 14.483 23.912 22.746

ESM–Ens-DNN 11.491 19.729 19.847
ESM–DNN 11.960 20.184 20.440

ESM–Ens-LEAR 12.518 22.083 20.354
ESM–LEAR 13.387 23.427 21.070
ESM–LSTM 19.446 30.740 27.065
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Forecasting Results
Model

2019-2020 2021-2022 2023-2024

MAE RMSE sMAPE MAE RMSE sMAPE MAE RMSE sMAPE

ESM 6.101 9.366 23.950 45.953 77.320 29.337 16.370 28.686 30.852

Ens-DNN 4.248 7.190 19.127 18.092 29.263 15.961 11.278 22.804 24.881

DNN 5.051 8.236 21.263 24.919 53.603 21.993 12.831 23.856 26.601

Ens-LEAR 4.065 6.822 19.810 22.820 35.562 19.179 13.198 23.818 28.533

LEAR 4.109 6.975 19.363 25.552 40.137 20.430 13.358 24.707 28.115

LSTM 4.808 7.684 21.421 26.552 43.644 20.807 14.532 26.088 28.958

ESM–Ens-DNN + 3.485 5.891 16.631 17.312 27.297 15.433 10.949 22.178 24.454

ESM–DNN + 3.763 6.357 17.684 21.372 33.177 17.963 11.569 22.453 25.371

ESM–Ens-LEAR + 3.670 6.098 17.715 20.117 37.146 17.419 11.199 22.146 25.425

ESM–LEAR + 3.834 6.283 17.965 23.812 39.915 18.294 11.491 22.903 25.431

ESM–LSTM + 4.417 7.388 19.951 25.106 40.061 20.024 13.925 24.287 28.264

ESM–Ens-DNN 3.838 6.244 17.987 19.376 30.821 16.726 11.258 22.122 24.827

ESM–DNN 3.967 6.271 18.351 20.079 31.659 17.349 11.833 22.623 25.620

ESM–Ens-LEAR 3.885 6.273 18.156 21.951 36.963 17.337 11.719 23.014 25.570

ESM–LEAR 4.145 6.613 18.976 23.807 39.910 18.292 12.209 23.759 25.941

ESM–LSTM 5.717 8.660 23.425 34.742 54.524 25.081 17.879 29.036 32.688

Results and Interpretation
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Statistical testing Results


⊡ The Diebold-Mariano test: Diebold and Mariano (1995) 

Results and Interpretation

► Go to details

2019-2020 2021-2022 2023-2024
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Profit contribution of a storage application


Results and Interpretation

Battery Charge 

Price decrease

Price increase

Battery discharge

BUY

SELL

Profit
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Energy Storage Model
Closing remarks

⊡ Maximise the daily profit of a storage unit that buys energy at low 

prices and sells at high prices (using forecasted prices): 

 

⊡ Actual realised profit (using real prices): 

                                                

 electricity generation,  charging power 

⊡ Storage fully cycles daily to avoid shifting across days 
⊡ The ratio of the realised profit contribution to the optimal profit 

contribution

max
Cd,h, Gd,h

Π = ∑
d,h

( ̂pd,h Gd,h − ̂pd,h Cd,h)

Πact = ∑
d,h

(pd,h Gd,h − pd,h Cd,h)

Gd,h Cd,h

► Go to Constraints
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Energy Storage Model Results
Closing remarks

⊡ Storage 1: Long-duration unit (7 h) with lower efficiency (75%). 
⊡ Storage 2: Medium-duration unit (3 h) with medium efficiency (80%). 
⊡ Storage 3: Short-duration unit (1 h) with high efficiency (90%).

Model Storage 1 Storage 2 Storage 3
ESM 0,916 0,934 0,917

Ens-DNN 0,911 0,932 0,903
DNN 0,842 0,869 0,848

Ens-LEAR 0,895 0,923 0,895
LEAR 0,885 0,916 0,884
LSTM 0,727 0,751 0,738

ESM–Ens-DNN+ 0,917 0,936 0,906
ESM–DNN+ 0,888 0,907 0,859

ESM–Ens-LEAR+ 0,902 0,917 0,884
ESM–LEAR+ 0,899 0,917 0,881
ESM–LSTM+ 0,782 0,809 0,765

ESM–Ens-DNN 0,906 0,927 0,897
ESM–DNN 0,890 0,915 0,888

ESM–Ens-LEAR 0,902 0,920 0,892
ESM–LEAR 0,894 0,913 0,879
ESM–LSTM 0,642 0,664 0,603
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Conclusion


Closing remarks

⊡ Combining ESM with Econometric models significantly improves 
day-ahead price forecasts. 

⊡ The ESM’s Market Clearing Price provides unique structural 
information not captured by historical-data models alone. 

⊡ Hybrid models (especially ESM–Ens-DNN+) deliver the highest 
accuracy across calm, crisis, and post-crisis market periods. 

⊡ Improved forecasts translate into meaningful economic gains, 
such as higher battery storage revenues. 
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Fundamental Model
   Electricity generation of unit  at node  

:    The variable cost of full load operation,  
:    Startup costs;  
:  Start-up decision of a generation unit,  

:     Running capacity 
:    Variable generation costs at minimum load 

:      The minimum generation of a running power plant 
:  States of the electricity consumption of long term storage 

: Cost for involuntary load shedding 
:         Load shedding costs 

: Curtailing renewables generation weighted by its 
penalty payments  

Gi,n,t : i n
vcFL

i,n,t
sci,n,t
SUi,n,t
Pon

i,n,t
vcML

i,n,t
gmin

i
CLslt,n,t
SHEDn,t
voll
CURTres,n,t

curtc
► Back

Appendix
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Fundamental Model
⊡ Market clearing is ensured by:

dn,t = ∑
i

Gi,n,t − ∑
stm⊂I

CMstm,n,t − ∑
stl⊂I

CLstl,n,t + SHEDn,t

+∑
nn

(FLOWnn,n,t − FLOWn,nn,t)

: electricity consumption of mid-term energy storage 
: long-term energy storage 

  load shedding 
 electricity imports 
 electricity exports

CMstm,n,t
CLstl,n,t
SHEDn,t :
FLOWnn,n,t :
FLOWn,nn,t :

► Back

Appendix
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Improved Day-Ahead Load Forecast
Appendix

⊡ ENTSO-E TSO load forecasts contain systematic errors (structural bias). 
⊡ We improve them using an error-correction model based on 

weekly seasonality +  dynamics. 
⊡ The improved load forecast is the sum of the TSO forecast and the 

predicted error: 
 

⊡ Error Decomposition:  
⊡ Seasonal Component: 

 

⊡ SARMA Model (for the remaining component) 

SARMA(1,1)(1,1)24

L̂*t = L̂t + ̂εt
εt = SCt + RCt

SCt =
24

∑
h=1

7

∑
d=1

HoWh,d
t ⋅ HSh,d

RCt = ϕ0 + ϕ1RCt−1 + ϕ24RCt−24 − ϕ1ϕ24RCt−25
+ω1ψt−1 + ω24ψt−24 + ω1ω24ψt−25 + ψt

► Back
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Evaluation metrics


⊡ Mean absolute error MAE 

 

⊡ Symmetric mean absolute percentage error (sMAPE) 

 

⊡ The relative MAE 

MAE =
1
N

N

∑
t=1

Pa
t − Pf

t

sMAPE =
1

24Nd

Nd

∑
d=1

24

∑
h=1

2
pd,h − ̂pd,h

pd,h + ̂pd,h

rMAE =
1

24Nd
∑Nd

d=1 ∑24
h=1 pd,h − ̂pd,h

1
24Nd

∑Nd
d=1 ∑24

h=1 pd,h − ̂pnaive 
d,h

Source: Lago (2021)

Appendix
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Statistical testing: The Diebold-Mariano test

⊡ The loss differential series: 

 is zero, 

: the prediction error of model  for day  and hour , 
 is the loss function. 

we compute the statistic: 

                    

1. Null hypothesis  

2. The alternative hypothesis 

ΔA,B
d,h = L (εA

d,h) − L (εB
d,h)

εZ
d,h = pd,h − ̂pd,h Z d h

L( ⋅ )

DM = N
̂μ
̂σ

H0 : E (ΔA,B
d,h ) ≤ 0

H1 : E (ΔA,B
d,h ) ≥ 0 ► Back

Appendix
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Energy Storage Model: Operational Constraints
⊡ Power capacity constraint: 

 

⊡ State of charge (SOC): 

 

⊡ No discharge beyond available storage: 

 

⊡ Storage energy capacity: 

 

⊡ Daily cycle reset:    

⊡ Non-negativity: 

Gd,h + Cd,h ≤ cap

SLd,h = SLd,h−1 + η Cd,h − Gd,h

Gd,h ≤ SLd,h−1

SLd,h ≤ cap . ecr

SLd,1 = η Cd,1, SLd,24 = 0

Gd,h ≥ 0, Cd,h ≥ 0, SLd,h ≥ 0 ► Back

Appendix


