

ASSESSING THE QUALITY OF ELECTRICITY MARKETS

Arvind Rangarajan

Supervisors: Prof. Sean Foley, Prof. Stefan Trück

Overview

MACQUARIE University BUSINESS SCHOOL SYDNEY-AUSTRALIA

ELECTRICITY MARKETS ARE DRIVING DECARBONIZATION

Global clean energy investment hit \$US1.77 trillion in 2023, up 17%

Source: https://reneweconomy.com.au/global-clean-energy-investment-hit-us1-77-trillion-in-2023-up-17/

Technological changes:

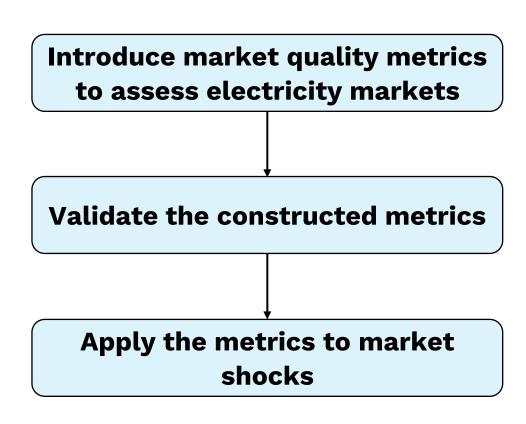
- Battery storage
- New interconnections
- Grid expansions
- Digitalization

Regulatory changes:

- > Shorter dispatch intervals
- Pricing methodology
- > Financial settlement periods
- Auction closure times

Overview

OBJECTIVE, CONTRIBUTIONS & DESIGN



Introduce Metrics to Assess the Quality of Electricity Markets

- Framework to assess price formation
- Built on participant bidding behaviour

General Contributions:

- Contributes to academic literature
 - ✓ Settlement price metrics
 (Li and Flynn, 2005, 2004a,b; Mayer and Trück, 2018)
 - ✓ Random walk tests
 (Arciniegas et al., 2003; Growitsch and Nepal, 2009;
 Higgs and Worthington, 2003)
- Practical implications for policymakers and regulators

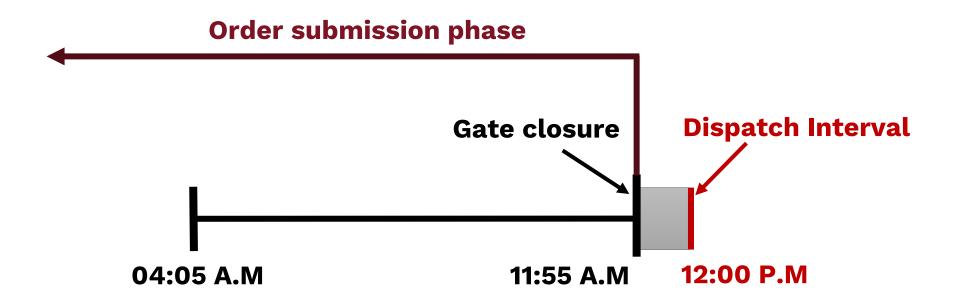
Institutional Details

NATIONAL ELECTRICITY MARKET

4

Network characteristics:

- > Covers NSW, ACT, QLD, VIC, SA & TAS
- > Interconnected system
- Cap price: \$15,500 /MWh (FY 22-23)
- > Floor price: -\$1000/ MWh
- > One-sided market

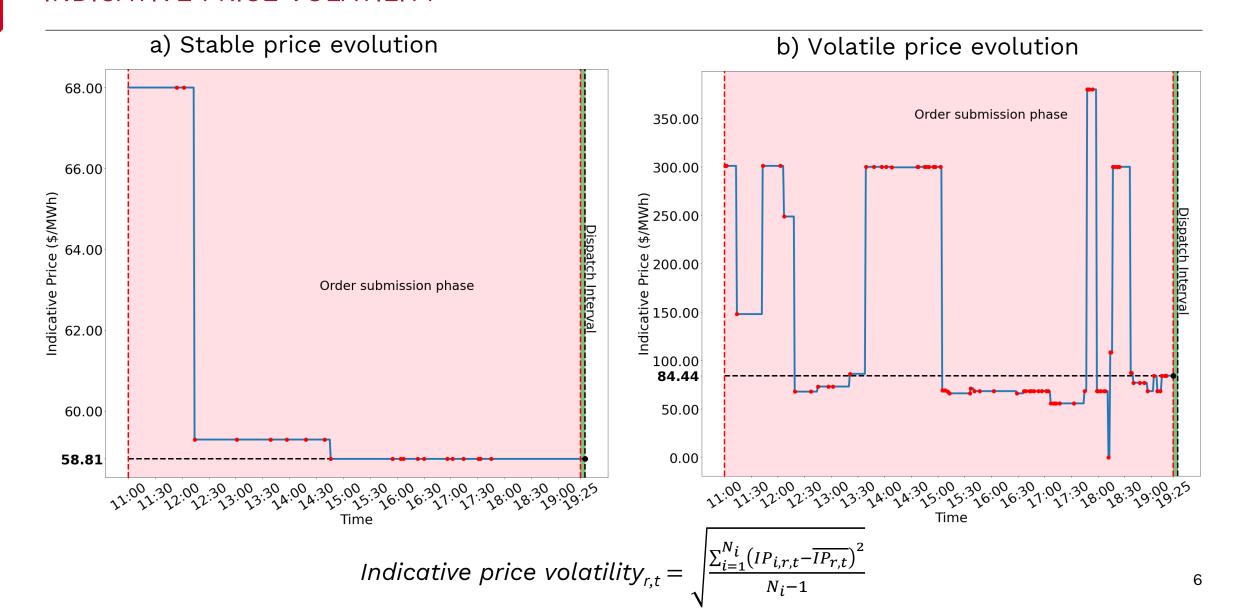

Regional Reference Node

DC Interconnector

Institutional Details

DISPATCH PROCESS

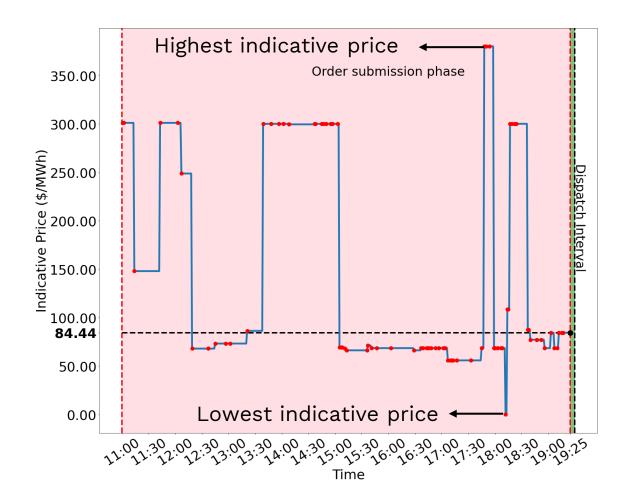
Network modelling:


- > Generator characteristics
- > Interconnector constraints

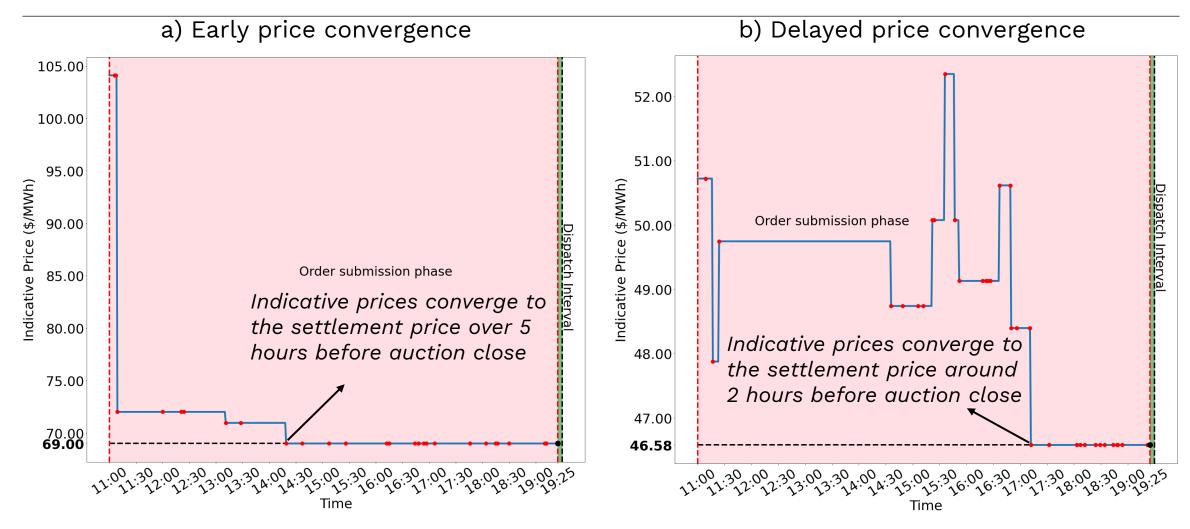
NEMPY- Python modelling package (Nick Gorman, Anna Bruce, Iain MacGill)

Generic constraints

INDICATIVE PRICE VOLATILITY

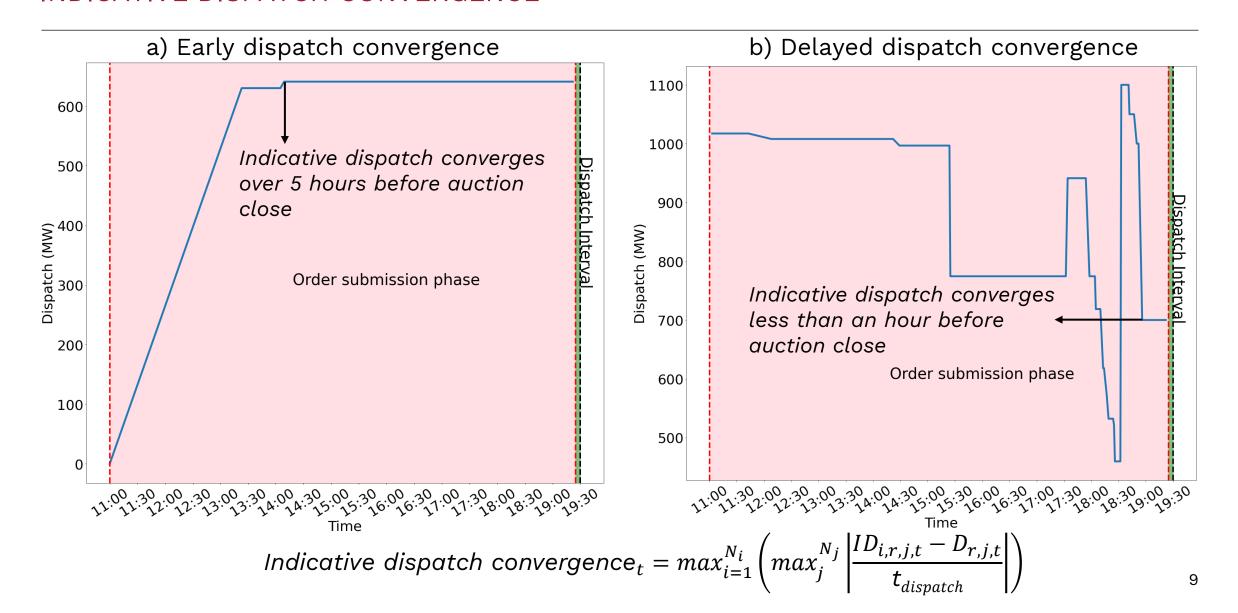


INDICATIVE PRICE RATIOS

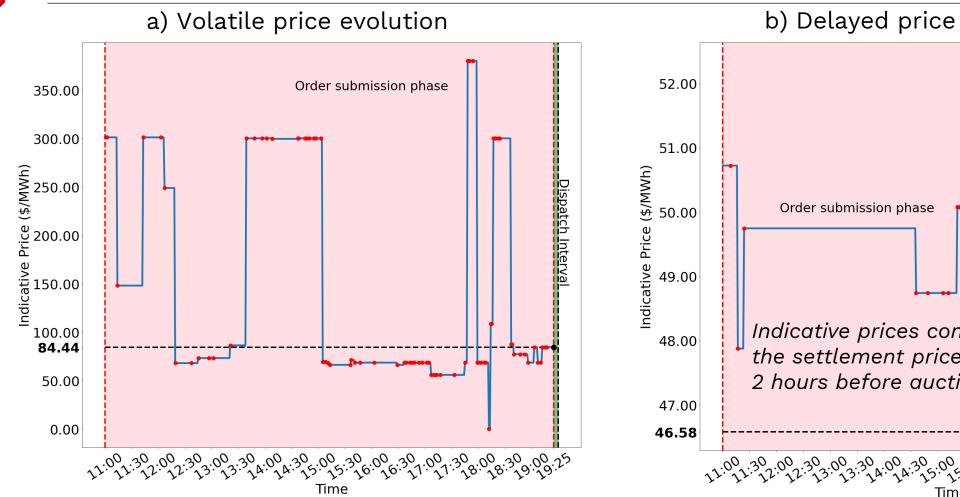

Lowest indicative price $\operatorname{ratio}_{\mathsf{r},\mathsf{t}} = \left| \frac{\min_{i=1}^{N_i} \mathit{IP}_{i,r,t}}{\mathit{P}_{r,t}} \right|$

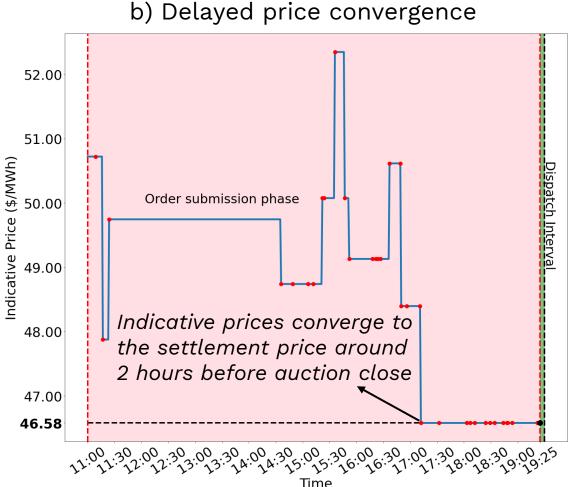
Highest indicative price ratio_{r,t} = $\left| \frac{\max_{i=1}^{N_i} IP_{i,r,t}}{P_{r,t}} \right|$

INDICATIVE PRICE CONVERGENCE

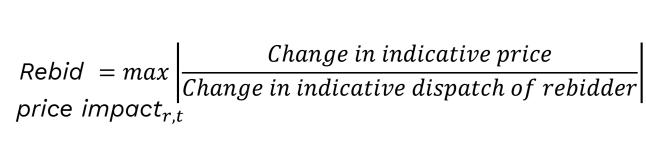


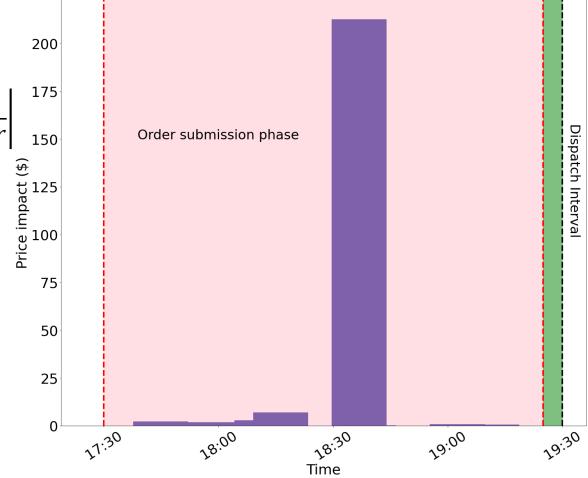
Indicative price convergence_{r,t} =
$$max_{i=1}^{N_i} \left| \frac{IP_{i,r,t} - P_{r,t}}{t_{disnatch}} \right|$$


INDICATIVE DISPATCH CONVERGENCE



MARKET EFFICIENCY METRICS





REBID PRICE IMPACT

Price response associated with a unit change in the volume of the rebidding participant

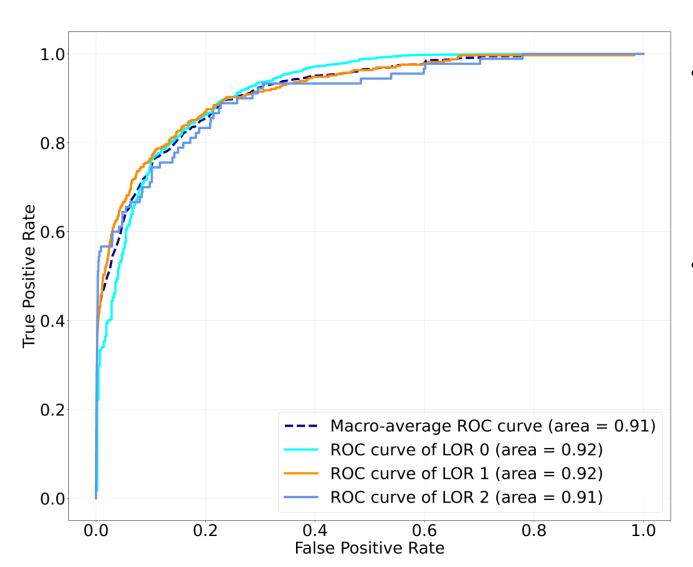
Validation phase

DO THE METRICS PREDICT PERIODS OF MARKET STRESS? (LOR 1 & 2)

$$ln\left(\frac{P(Y \leq J)}{1 - P(Y \leq J)}\right)_{r,t} = \alpha_j - \sum_{i=1}^N \beta_i \text{Metrics}_{i,r,t} + \epsilon_t$$

Higher values across most metrics are associated with an increased likelihood of a Lack of Reserve (LOR) event

Decrease in the lowest indicative price ratio is associated with an increased likelihood of market stress


	<u>Dependent variable:</u>
	Event
Indicative Price Volatility'	0.464***
	(0.044)
Indicative price convergence'	3.661***
	(0.454)
Indicative dispatch convergence'	1.537***
	(0.093)
Lowest indicative price ratio	-1.320***
	(0.097)
Highest indicative price ratio	0.038***
	(0.053)
Rebid price impact'	1.319***
	(0.069)
Observations	132,455
Normal market periods	131, 651
LOR 1 market periods	564
LOR 2 market periods	240

*p<0.1, **p<0.05, ***p<0.01
*Coefficients scaled by 1,000

Validation phase

CONSTRUCTING AN INDEX

- Plots the model's True Positive Rates against False Positive Rates at various probability thresholds
- Area Under the Curve (AUC) provides

 a single metric for assessing a
 model's performance
 - > AUC = 1: Perfect classifier
 - > AUC = 0.5: Random guessing

USING METRICS TO EVALUATE THE MARKET DURING EVENTS

Events:

- 1. Interconnector outages in SA
- 2. Strategic rebidding in QLD
- 3. 5-minute settlement period change across NEM

$$y_{r,t} = \beta_0 + \beta_1 Event_{r,t} + \beta_2 FE + \epsilon_t$$

- $\rightarrow y_{r,t}$:market quality metric
- \triangleright Event_{r,t}: indicator variable for interventions
- > FE: hourly indicator variables

INTERCONNECTOR OUTAGES

Interconnectors:

- Inter-regional trade -> Improves liquidity
- Improved liquidity -> Improves efficiency (Chordia et al. 2008)

Theoretical predictions:

Outage would negatively impact market efficiency and liquidity

Interconnector outages heighten auction volatility, delay convergence to settlement conditions, and worsen market liquidity.

Dependent variable:
Event
76.504***
(7.417)
3.479***
(0.144)
0.872***
(0.034)
140.293***
(29.700)
27.928***
(2.200)
87.984***
(4.911)

*p<0.1, **p<0.05, ***p<0.01

STRATEGIC REBIDDING

Strategic rebidding:

- Rebidding capacity from low to high prices before the close of a 30minute settlement period
- > Associated with price spikes (Clements et al., 2016)

Theoretical predictions:

Higher variations in the batching phase and bids would have a high price impact

Strategic rebidding heightens auction volatility, delays convergence to settlement conditions, and worsens market liquidity.

	<u>Dependent variable:</u>
	Event
Indicative price volatility	868.422***
	(44.475)
Lowest indicative price ratio	-0.132***
	(0.010)
Highest indicative price ratio	0.579***
	(0.039)
Indicative price convergence	2,963.744***
	(330.127)
Indicative dispatch convergence	33.064***
	(6.940)
Rebid price impact	202.730***
·	(19.918)

*p<0.1, **p<0.05, ***p<0.01

5-MINUTE SETTLEMENT PERIOD CHANGE

Settlement period change:

> Implemented to eliminate strategic re-bidding (AEMC, 2017)

Theoretical predictions:

Lower variations in the batching phase and bids would have a lower price impact after rule change

Settlement period change reduced auction volatility, accelerated convergence to settlement conditions, and improved market liquidity.

	<u>Dependent variable:</u>
	Event
Indicative price volatility	-6.455***
	(1.390)
Lowest indicative price ratio	-0.933***
	(0.147)
Highest indicative price ratio	0.436*
	(0.252)
Indicative price convergence	-35.295***
	(5.291)
Indicative dispatch convergence	-2.347**
	(0.943)
Rebid price impact	-128.269***
-	(5.443)

*p<0.1, **p<0.05, ***p<0.01

Appendix

REFERENCES

- Arciniegas, I., Barrett, C., and Marathe, A. (2003). Assessing the efficiency of US electricity markets. Utilities Policy, 11(2):75–86.
- AEMC (2017). Five Minute Settlement. https://www.aemc.gov.au/rule-changes/ five-minute-settlement.
- Chordia, T., Roll, R., and Subrahmanyam, A. (2008). Liquidity and market efficiency. Journal of Financial Economics, 87(2):249–268.
- Clements, A., Hurn, A., and Li, Z. (2016). Strategic bidding and rebidding in electricity markets. Energy Economics, 59:24–36.
- Growitsch, C. and Nepal, R. (2009). Efficiency of the German electricity wholesale market. European transactions on electrical power, 19(4):553-568.
- Higgs, H. and Worthington, A. (2003). Evaluating the information efficiency of Australian electricity spot markets: Multiple variance ratio tests of random walks. Pacific and Asian Journal of Energy, 13(1):1–16
- Li, Y. and Flynn, P. C. (2004a). Deregulated power prices: comparison of diurnal patterns. Energy Policy, 32(5):657–672.
- Li, Y. and Flynn, P. C. (2004b). Deregulated power prices: comparison of volatility. Energy Policy, 32(14):1591–1601.
- Li, Y. and Flynn, P. C. (2005). Deregulated power prices: changes over time. IEEE Transactions on Power Systems, 20(2):565–572.
- Mayer, K. and Trueck, S. (2018). Electricity markets around the world. Journal of Commodity Markets, 9:77-100.