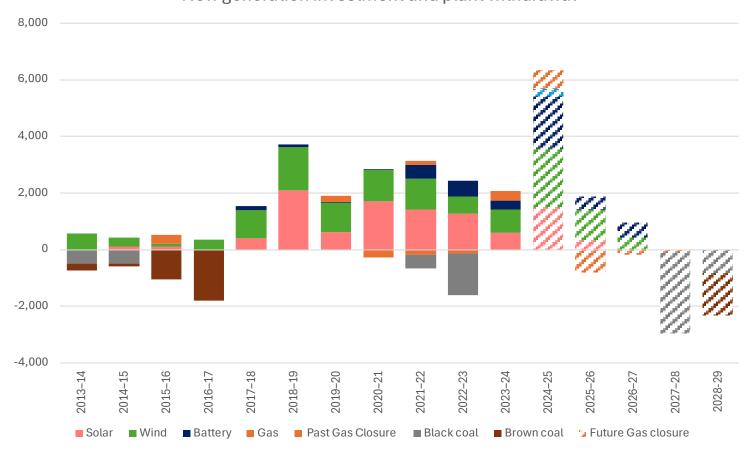


The Value of Dispatchability and Earnings-at-Risk of Electricity Generators under Energy Transition

Lin Han, Nino Kordzakhia and Stefan Trück
Macquarie University



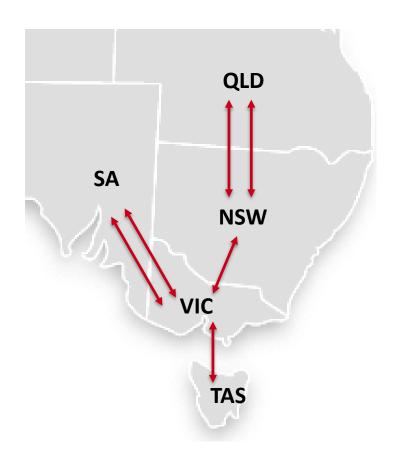
11th Energy Finance Christmas Workshop: 12-13 December 2024, Sydney, Australia

The Energy Transition

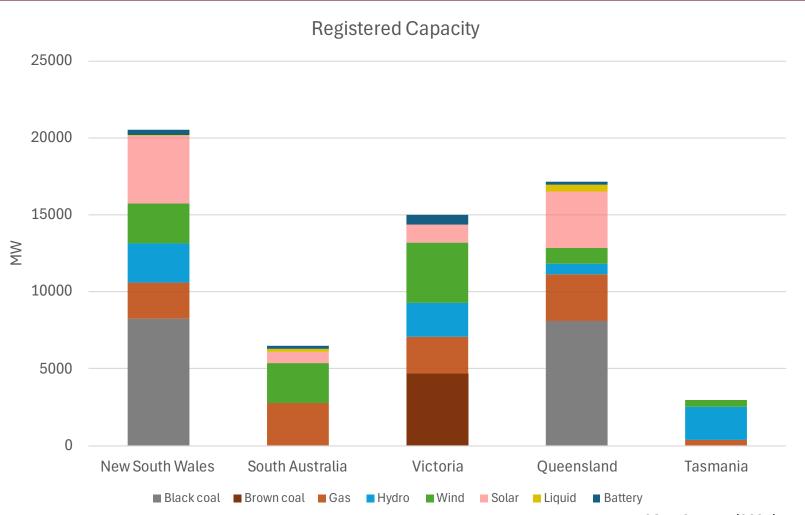
SOURCE: AER (2024)

Motivation

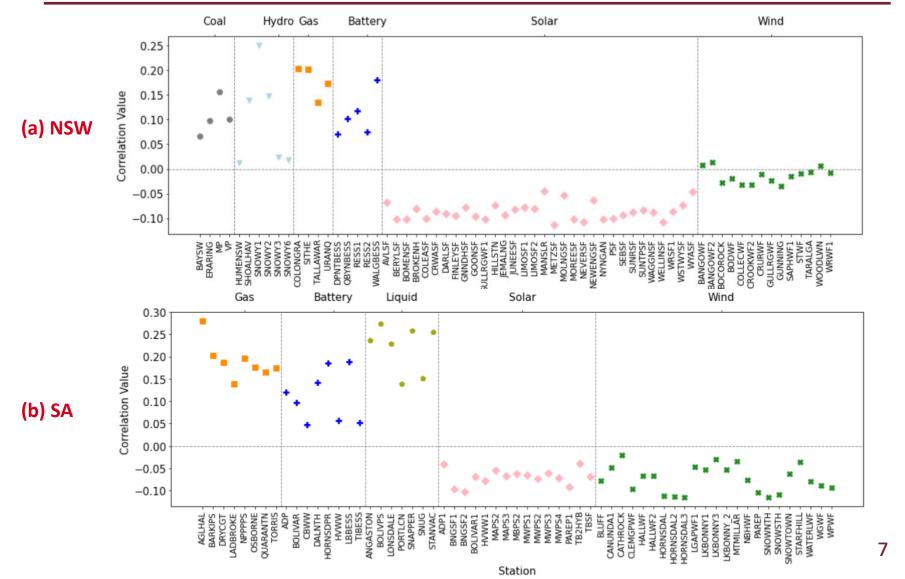
- Dispatchable generators such as coal and gas fired stations
 - high volatility of VRE production substantially influences wholesale prices and the residual demand for other generators
 - decision-making on entering or exiting the market
 - "Investment is needed urgently. New generation, storage and firming must be in place before coal power stations retire, and to meet Australia's growing demand for electricity." (AEMO, 2024)
- Non-dispatchable VREs
 - evaluating the uncertainty and profitability of new investment
 - appropriate pricing of long-term contracts such as Power Purchase Agreements


Objectives

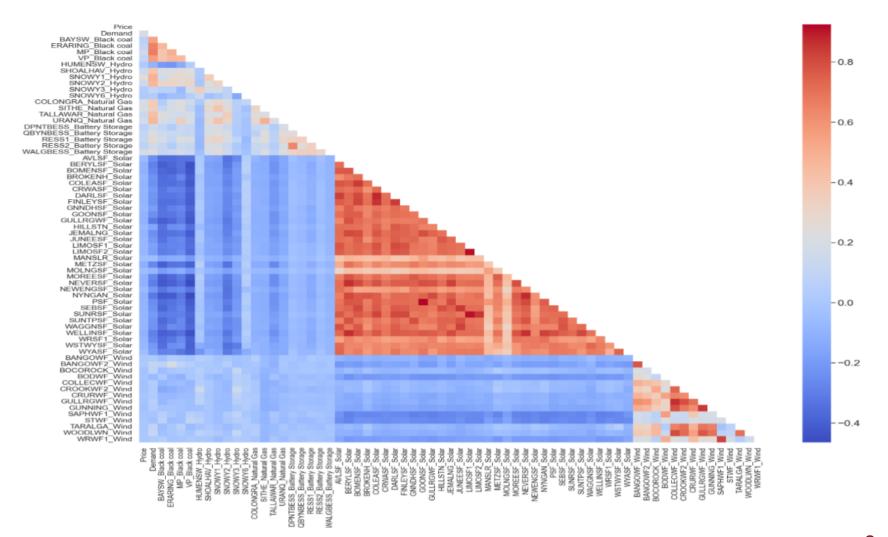
- This study aims to provide a comprehensive understanding of profitability and risk profiles for different generation assets and technologies
- We evaluate the profitability of each generation technology regarding
 - dispatch-weighted price (DWP) it receives
 - the upside potential of earnings it can achieve
- We quantify and compare investment risks for different generation technologies
 - earnings-at-risk (EaR): it places an emphasis on measuring the variability in the accumulated revenues obtained by a power plant over a defined time period


The Australian National Electricity Market (NEM)

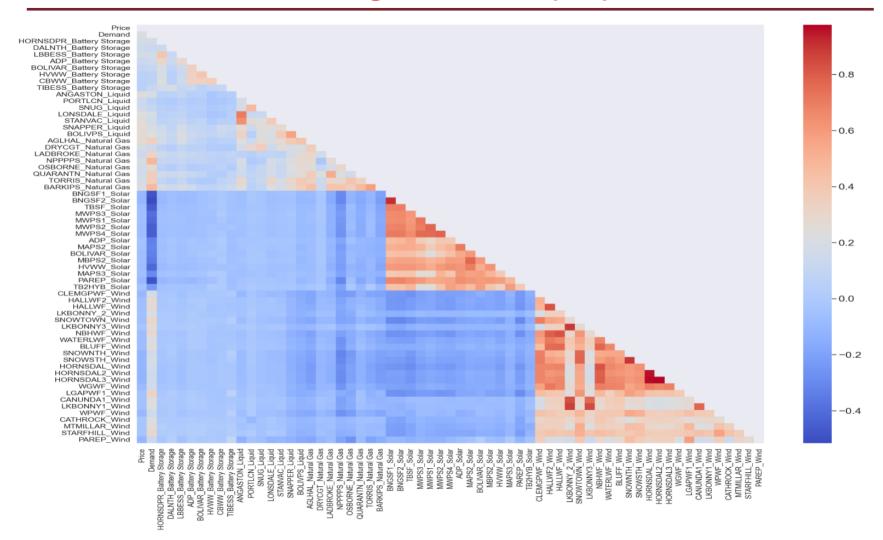
- One of the world's longest interconnected power systems, containing 5 states
- ➤ **Trading:** generators **offer** to supply the market with specified amounts of electricity at specified prices for each **5 minutes** and can re-submit the offered amounts at any time.
- Non-storable nature of electricity: supply and demand have to be instantaneously balanced 24/7
- ➤ **Volatile market**: prices are capped at a maximum of \$17,500/MWh, with a price floor of -\$1,000/MWh.
- ➤ **Risk management**: NEM participants typically manage the financial risk associated with the significant degree of spot price volatility by using different financial contracts (exchange-traded or OTC).



Institutional Background (cont.): Generation technologies in the NEM

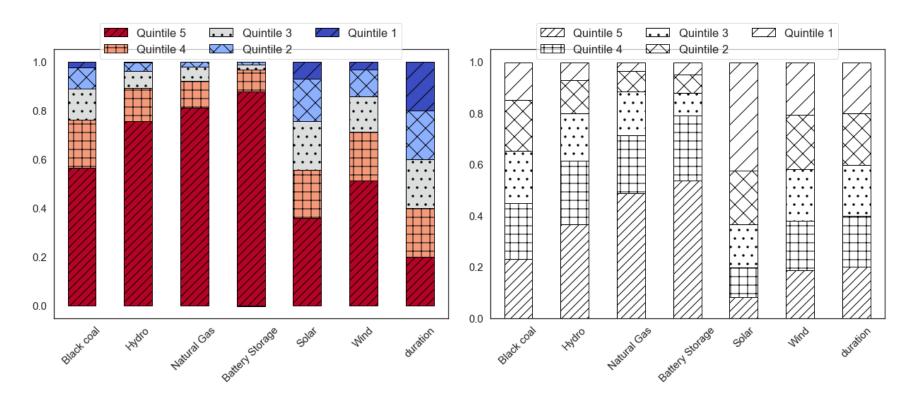

The Australian National Electricity Market (cont.): Generation technologies – correlation with spot price

The Australian National Electricity Market (cont.):


Correlation between generators (NSW)

The Australian National Electricity Market (cont.):

Correlation between generators (SA)

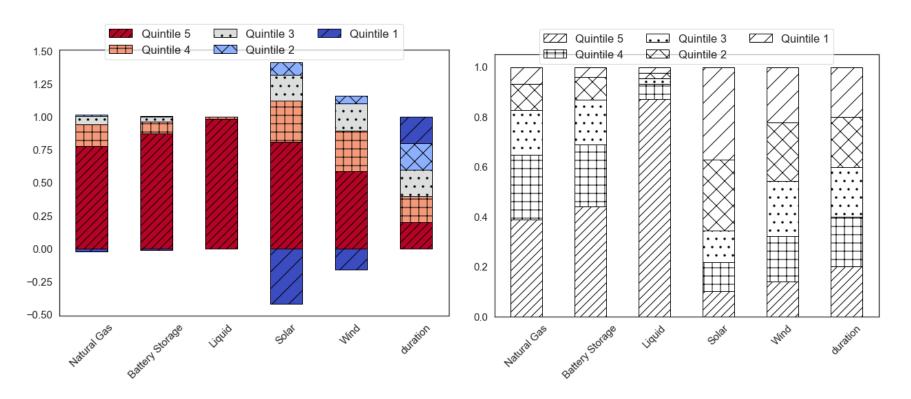


The Australian National Electricity Market (cont.): Generation technologies – source of earning (NSW)

Price quintiles: \$53.55 (Q1) \$72.84 (Q2) \$100.81 (Q3) \$158.99 (Q4) \$16,600 (Q5)

(a) Earnings at different price levels

(b) Dispatch at different price levels



The Australian National Electricity Market (cont.): Generation technologies – source of earning (SA)

Price quintiles: -\$7.11 (Q1) \$47.04 (Q2) \$92.44 (Q3) \$168.51 (Q4) \$16,600 (Q5)

(a) Earnings at different price levels

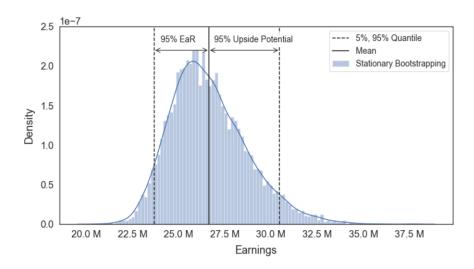
(b) Dispatch at different price levels

Related Literature

- 1. NPV, IRR and LCOE estimates for energy investment evaluation
 - Different risk factors are simulated
 - Policy uncertainty (Williges et al., 2010; Yang et al., 2010; Kitzing, 2014; Kitzing and Weber, 2014; Gatzert and Vogl, 2016)
 - Geographies, weather factors (Kaldellis and Gavras, 2000; Montes and Martín, 2007; Cutler et al., 2011; Biggins et al., 2023)
- 2. Optimising a portfolio of energy plants (Muñoz et al., 2009; Westner and Madlener, 2010; Arnesano et al., 2012; Lynch et al., 2013; Cucchiella et al., 2017; Zhang et al., 2018; Gallardo et al., 2020)
- 3. Market value of different types of power plants; impacts on market outcomes
 - Flexibility premium (Hirth, 2013, 2016; Hirth and Radebach, 2016; Eising et al., 2020; Prol et al., 2020; Rai and Nunn, 2020)
 - Cannibalization effect (Prol et al., 2020; Gonçalves and Menezes, 2022; Csereklyei et al., 2023; Reichenberg et al., 2023)

Methodology - dispatch-weighted price (DWP)

$$DWP_T^s = \frac{\sum_{t=1}^T P_t \times Q_t^s}{\sum_{t=1}^T Q_t^s}$$


- \square DWP_T^s denotes the dispatch-weighted price for station s over time T
- \square P_t denotes the regional spot price at time t
- \square Q_t^s denotes the dispatched load of station s at time t

Methodology - EaR and Upside Potential

$$EaR_T^s = \frac{\mathbb{E}(E_T^s) - q_\alpha^s}{\mathbb{E}(E_T^s)}$$

Upside Potential_T^s =
$$\frac{q_{1-\alpha}^s - \mathbb{E}(E_T^s)}{\mathbb{E}(E_T^s)}$$

- \square EaR_T^s denotes the earning-at-risk for station s over time T
- \Box E_t denotes the earnings of station s over time T
- \square q_{α}^s and $q_{1-\alpha}^s$ denote the quantiles corresponding to the selected confidence level $(1-\alpha)$
- A stationary bootstrap procedure (Politis and White, 2004; Patton et al., 2009) is applied to simulate the price-load pair

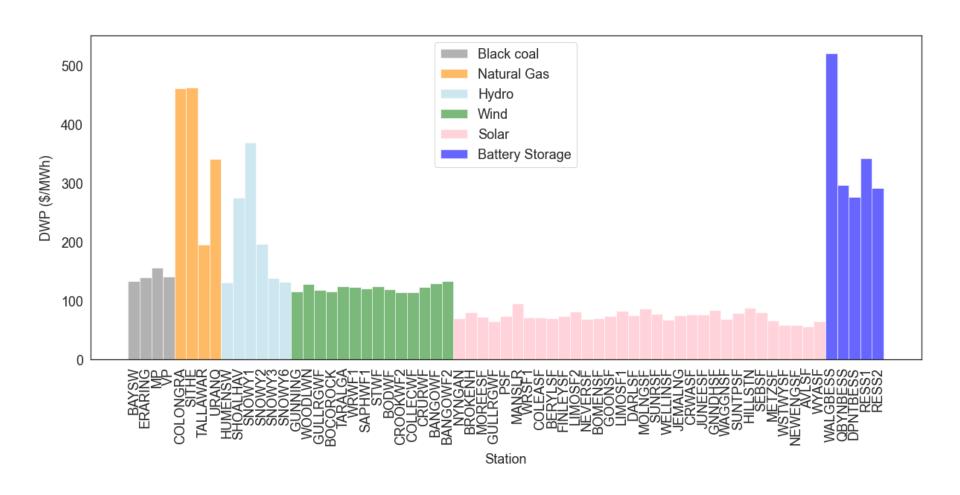
The Data

Intra-day spot prices and dispatched load by station

Frequency: 5-Minute

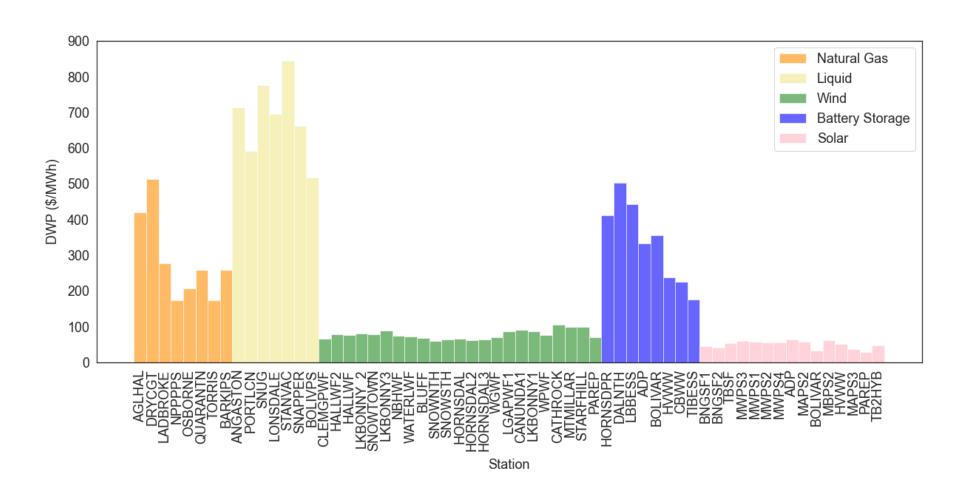
Markets: NSW and SA

> 126 Stations: 65 in NSW and 61 in SA

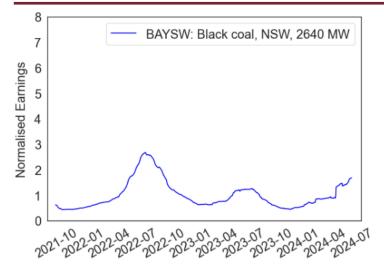

> Time period: 01/07/2021 - 30/06/2024

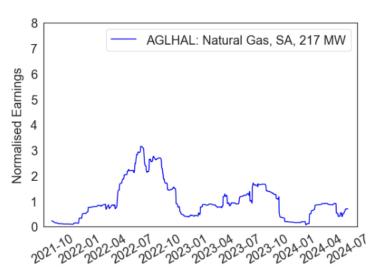
Data source: Australian Energy Market Operator (AEMO)

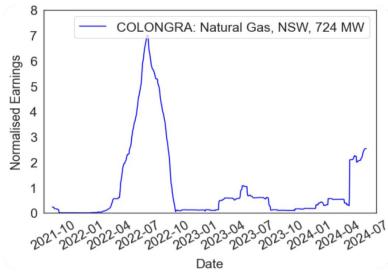
We simulate full-year, spring, summer, autumn and winter DWPs and earnings for each station

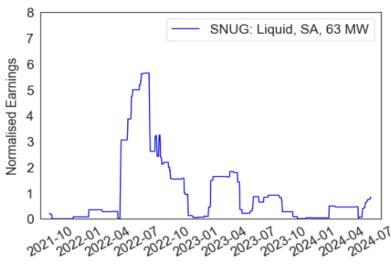


Empirical results: Actual DWPs for stations in NSW

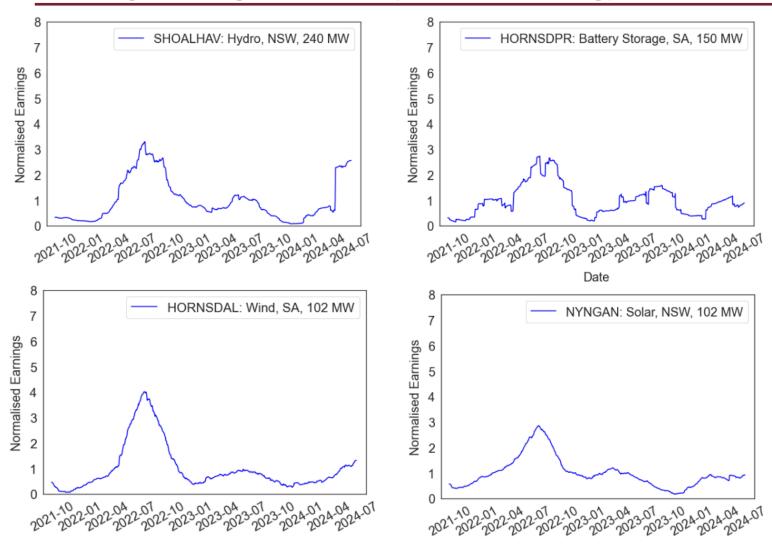


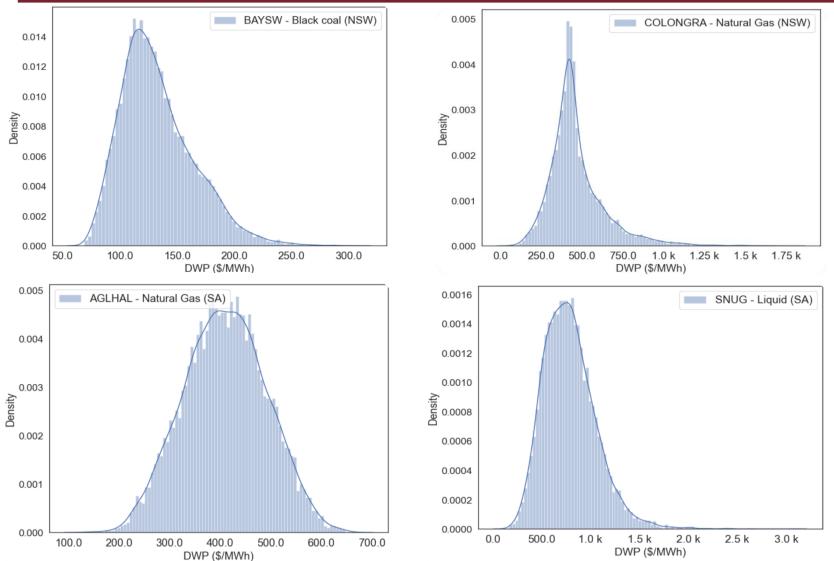

Empirical results (cont.): Actual DWPs for stations in SA



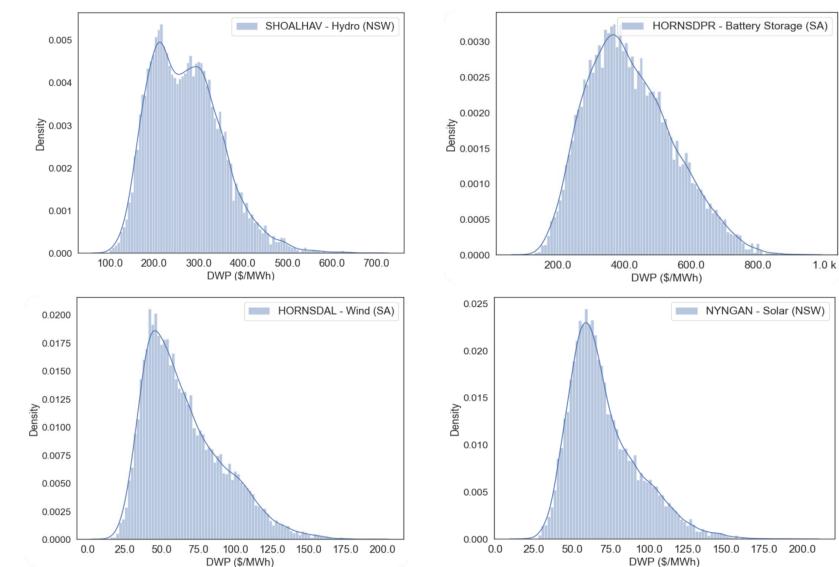


Empirical results (cont.): Earnings of single stations (3-month rolling)





Empirical results (cont.): Earnings of single stations (3-month rolling)



Empirical results (cont.): Simulated 1-year DWPs for stations

Empirical results (cont.): Simulated 1-year DWPs for stations

Empirical results (cont.): Distributional properties of simulated DWPs - NSW

Technology	Mean	Std.	Skew.	Kurt.	Coefficient of variation	Quartile Coefficient of Dispersion	
Solar	73.12	18.09	0.865	1.174	0.244	0.1559	
Wind	121.03	36.53	0.8854	0.3526	0.3025	0.2134	
Black coal	141.91	36.82	0.8529	0.4563	0.2590	0.1777	
Hydro	205.15	65.08	0.8161	0.4807	0.3203	0.2315	
Battery	332.71	71.75	0.4348	0.0032	0.2123	0.1600	
Natural Gas	360.33	112.69	0.9511	1.9415	0.3023	0.1949	

^{1:} Coefficient of variation (CV) (Everitt and Skrondal, 2002) is a measure of relative standard deviation which is defined as the ratio of standard deviation to the mean. It reflects the variability of data in relation to the mean value.

^{2:} Quartile Coefficient of Dispersion (Bonett, 2006) measures the dispersion of a distribution using quartiles. It provides similar information to CV and is calculated as $\frac{Q_3 - Q_1}{Q_3 + Q_1}$, where Q_1, Q_3 are the first and third quartiles.

Empirical results (cont.): Distributional properties of simulated DWPs - SA

Technology	Mean	Std.	Skew.	Kurt.	Coefficient of variation	Quartile Coefficient of Dispersion	
Solar	48.85	20.12	0.9071	1.1803	0.4168	0.2749	
Wind	73.08	22.56	0.8013	0.3013	0.3136	0.2230	
Natural Gas	278.6	67.03	0.3444	-0.2436	0.2508	0.1802	
Battery	ĺ	, 0	0111		Ŭ		
Storage	349.22	118.08	1.5522	13.3377	0.3173	0.1903	
Liquid	804.6	339.28	1.0116	1.4919	0.4156	0.2897	

^{1:} Coefficient of variation (CV) (Everitt and Skrondal, 2002) is a measure of relative standard deviation which is defined as the ratio of standard deviation to the mean. It reflects the variability of data in relation to the mean value.

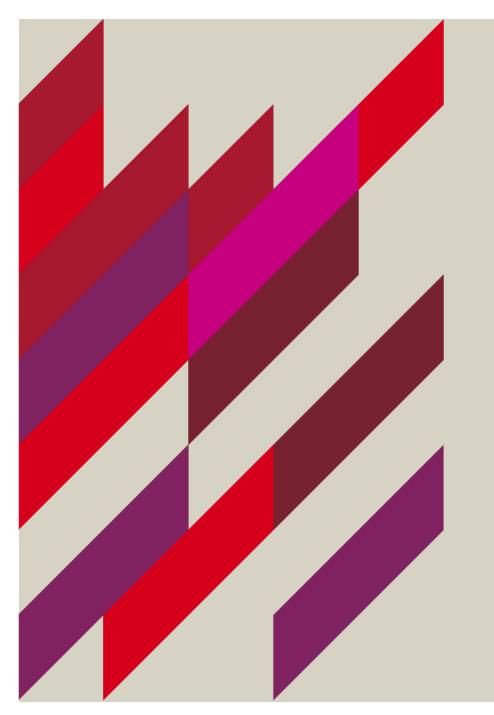
^{2:} Quartile Coefficient of Dispersion (Bonett, 2006) measures the dispersion of a distribution using quartiles. It provides similar information to CV and is calculated as $\frac{Q_3-Q_1}{Q_3+Q_1}$, where Q_1,Q_3 are the first and third quartiles.

Empirical results (cont.): Simulated earnings, EaRs and upside potentials - NSW

Technology	Skew	Kurt	Coefficient of variation	Quartile Coefficient of Dispersion	99%EaR	95%EaR	95% upside potential	99% upside potential
Solar	0.2116	0.3517	0.0134	0.1455	42.09%	31.82%	37.40%	53.23%
Wind	0.3416	0.9498	0.6792	0.2353	49.88%	41.44%	64.57%	99.53%
Black coal	0.2869	0.8097	0.4553	0.1982	46.04%	37.50%	53.81%	81.58%
Hydro	0.372	0.9281	0.7688	0.2602	55.83%	46.31%	70.59%	107.19%
Battery	0.2558	0.7828	0.8179	0.1816	40.46%	33.74%	47.51%	74.06%
Natural Gas	0.4893	0.9927	0.9826	0.353	70.09%	59.86%	92.33%	144.90%

Empirical results (cont.): Simulated earnings, EaRs and upside potentials - SA

1	Technology	Skew	Kurt	Coefficient of variation	Quartile Coefficient of Dispersion	99%EaR	95%EaR	95% upside potential	99% upside potential
So	olar	0.3830	0.4825	0.0583	0.2694	71.68%	56.12%	69.00%	100.33%
W	ind	0.3364	0.8976	0.5891	0.236	48.69%	40.62%	63.92%	96.90%
N:	atural Gas	0 2060	0.7578	0.457	0.2781	64.43%	53.18%	74.09%	110.99%
			, , ,		·				
	attery quid		0.5029		0.1703 0.4277	47.15% 76.68%		43.95% 111.13%	65.29% 178.16%


Conclusions

- Flexible generators such as hydro, natural gas, and liquid stations
 - stronger correlation with spot prices
 - higher DWPs
 - higher upside potential of earnings but also high EaRs

Conclusions (cont.)

- VRE generations based on wind and solar
 - low DWPs and upside potential of earnings, low EaRs
 - increasing cannibalization effects: higher penetration reduces the value of their own generation
 - opportunity for the combination of VRE generations and other dispatchable renewable energy/storage facility to achieve overall higher market value
- Coal generation
 - low DWPs and upside potential of earnings, low EaRs
 - Additional cheaper renewable generators entering the market could further reduce their profitability

Thank you!