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Benth model: For all t ∈ [0,T ],

Ft(T ) = F0(T ) exp

(
mT

t +

∫ t

0
σL(s)dWs +

∫ t

0
σS(s)e−λ(T−s)dLs

)
Studied in Goutte and al. [2], [3] using a quadratic approach.

Stochastic volatility: Complex volatility structure.
Volatility varies over time: volatility increases when the
time to maturity decreases (Samuelson hypothesis).

Regime switching: catches states of the world as

”good” or ”bad” economic.
”on-peak” or ”off-peak” time for electricity.
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Let (ω,F ,P) be a filtered probability space with filtration F = (Ft)t∈[0,T ]

satisfying the usual conditions for some fixed but arbitrary time horizon
T ∈ (0,∞). The Regime Switching Stochastic Volatility model (RS-SV) is
defined by

dSt = µ(t,Yt ,Xt)Stdt + YtStdW
1
t (1)

dYt = a(t,Yt ,Xt)dt + b(t,Yt ,Xt)dW
2
t

where

W 1 and W 2 are two Brownian motion which are correlated as
d〈W 1,W 2〉t = ρdt.

Yt is a real stochastic process which is Ft-adapted.

Xt a continuous time homogeneous Markov chain on finite space
S = {1, 2, ...,N}.
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We assume that the time invariant matrix Q denotes the generator
(qij)i ,j=1,...,m of X , where qij is an infinitesimal intensity of X . Then, the
semi-martingale decomposition for X is given by

Xt = X0 +

∫ t

0
QXsds + MX

t

where (MX
t ) is an RN -valued martingale with respect to the natural

filtration generated by X under P.

Assumption 1

We will assume that we know all the trajectory of X, that is, FX
T and that

the Markov chain X is independent of S and Y .

In our model, there are three source of randomness: W 1, W 2 and X .
Hence we will denote by G, the filtration generated by W 1, W 2 and X. So
the filtration G = (Gt)t∈[0,T ] := σ(W 1

t ,W
2
t ,Xt , 0 ≤ t ≤ T ).
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Hull-White:

µ(t,Yt ,Xt) = µYt , a(t,Yt ,Xt) =
Yt

2

(
α− β2

2

)
, b(t,Yt ,Xt) =

β

2
Yt

dSt = µYtStdt + YtStdW
1
t

dY 2
t = αY 2

t dt + βY 2
t dW

2
t

Stein-Stein:

µ(t,Yt ,Xt) = µYt , a(t,Yt ,Xt) = α(ω − Yt), b(t,Yt ,Xt) = β

dSt = µYtStdt + YtStdW
1
t

dYt = α(ω − Yt)dt + βdW 2
t

Heston:

µ(t,Yt ,Xt) = µYt , a(t,Yt ,Xt) =
4κθ − σ2

8Yt
− κ

2
Yt , b(t,Yt ,Xt) =

σ

2

dSt = µYtStdt + YtStdW
1
t

dY 2
t = κ(θ − Y 2

t )dt + σYtdW
2
t

2κθ ≥ σ2
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We are interested in the hedging of an European style contingent claims
with an FT -measurable square integrable random payoff H based on the
dynamics given by

dSt = µ(t,Yt ,Xt)Stdt + YtStdW
1
t

dYt = a(t,Yt ,Xt)dt + b(t,Yt ,Xt)dW
2
t

Hence H is a function of time, S ,Y and X :

H : [0,T ]× R× R× S → R+

(t,St ,Yt ,Xt) 7→ h(t, St ,Yt ,Xt)

As example of payoff, we could take classical european Call option

H = h(ST ) := (ST − K )+

Goutte Stéphane Pricing and hedging in regime switching stochastic volatility model: Application to electricity markets.December 20, 2011 8 / 35



Definition 1

An Hedging strategy is a pair ϕ = (v , η) such that v = (vt)t∈[0,T ] is a
predictable process such that

E
[∫ T

0
v2
t Y

2
t S

2
t dt

]
+ E

[(∫ T

0
|vt ||µ(t,Yt ,Xt)|

)2
]
<∞ (2)

and η = (ηt)t∈[0,T ] is an adapted process such that for all t ∈ [0,T ],
E
[
η2
t

]
<∞.

The hedging strategy ϕ defines a portfolio where vt denotes the number of
shares of the risky asset S held by the investor at time t ∈ [0,T ] and ηt
denotes the amount invested at time t.
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Definition 2

Given a hedging strategy ϕ, we call for all t ∈ [0,T ]

the Value process V (ϕ), the right continuous process given by

Vt(ϕ) = vtSt + ηt (3)

the Cost process C (ϕ), the process given by

Ct(ϕ) = Vt(ϕ)−
∫ t

0
vsdSs (4)

The quantity
∫ t

0 vsdSs represents the hedging gains or losses up to time t
following the hedging strategy ϕ. If C (ϕ) is square integrable, then the
risk process of ϕ is defined by

Rt(ϕ) := E
[
(CT (ϕ)− Ct(ϕ))2 |Gt

]
(5)
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The study of this minimization in a general semimartingale case is due to
Schweizer [4]. Assume that VT (ϕ) = H, the local risk minimization
problem is to minimize the Risk process R(ϕ). This require more specific
assumptions on S. We assume that S can be decomposed as

St = S0 + Mt + At

where M is a real valued locally square integrable local P-martingale null
at 0 and A is a real valued adapted continuous process of finite variation
also null at 0. We recall now the Definition of Structure Condition (SC).
We say that S satisfies the (SC) if there exists a predictable process λ such
that A is absolutely continuous with respect to 〈M〉 in the sense that

At =

∫ t

0
λsd〈M〉s

and such that the so called mean variance tradeoff process (MVT) K
satisfied

Kt :=

∫ t

0
λ2
sd〈M〉s <∞, P − a.s.
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Moreover Proposition 2.24 of Follmer and Schweizer in [1] shows that
finding a locally risk minimizing strategy for a given contingent claim
H ∈ L2(P) is equivalent to finding a decomposition of H of the form

H = H lr
0 +

∫ T

0
ξlrt dSt + LlrT (6)

where H lr
0 is a constant, ξlr is a predictable process satisfying condition (2)

and Llr is a square integrable P-martingale null at 0 and strongly
orthogonal to M (i.e. LlrM is a P-martingale). The representation (6) is
usually referred to as the Follmer-Schweizer (FS) decomposition of H.
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Once we have (6), then the desired hedging strategy ϕlr which is locally
risk minimizing is then given for all t ∈ [0,T ] by

v lrt = ξlrt (7)

and
ηlrt = Vt(ϕ

lr )− v lrt St (8)

where

Vt(ϕ
lr ) = Ct(ϕ

lr ) +

∫ t

0
v lrs dSs (9)

with
Ct(ϕ

lr ) = H lr
0 + Llrt (10)
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As is shown in [1] and [6] there exists a measure P̂, the so called minimal
equivalent local martingale measure (minimal ELMM), such that

Vt(ϕ
lr ) = Ê [H|Gt ] (11)

where Ê denotes the conditional expectation under P̂.
Theorem 1 of [1] allows us to construct uniquely P̂ such that P̂ exists if
and only if for all t ∈ [0,T ]

Ẑt = exp

(
−
∫ t

0
λsdMs −

1

2

∫ t

0
λ2
sd〈S〉s

)
(12)

is a square integrable martingale under P. Then

P̂

P
:= ẐT ∈ L2(P)

defines a probability measure P̂ equivalent to P which is in P since one
easily verifies that ẐS is a local P-martingale.
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Let S , Y and X given as in model (1). The local risk minimizing hedging
strategy can be obtained in two step.

(I) Determine P̂ and the dynamic of (S ,Y ) under P̂.

(II) Find the decomposition of H with respect to S under P̂.

Then the optimal hedging strategy will defined by (7) and (8).
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Finding P̂:
According to previous subsection, the density process of the minimal
ELMM P̂ with respect to P is given by

Ẑt = exp

(
−
∫ t

0
λsdMs −

1

2
Kt

)
Hence S is continuous, we need to determine the canonical decomposition
St = S0 + Mt +

∫ t
0 λsd〈M〉s of S under P.

Proposition 1

Assume the regime stochastic volatility model (1) then we have that

Mt =

∫ t

0
SsYsdW

1
s ,At =

∫ t

0
µ(s,Ys ,Xs)Ssds , 〈M〉t =

∫ t

0
S2
s Y

2
s ds

λt =
dAt

d〈M〉t
=
µ(t,Yt ,Xt)

StY 2
t

and Kt =

∫ t

0

(
µ(s,Ys ,Xs)

Ys

)2

ds

Ẑ = exp

(
−
∫ t

0

µ(s,Ys ,Xs)

Ys
dW 1

s −
1

2

∫ t

0

(
µ(s,Ys ,Xs)

Ys

)2

ds

)
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We are now able to determine the dynamic of the model under P̂.

Proposition 2

Assume that Ẑ is a true P-martingale, then the dynamic of the model
(1) under P̂ is given for all t ∈ [0,T ] by

dSt = YtStdŴ
1
t

dYt = â(t,Yt ,Xt)dt + b(t,Yt ,Xt)dŴ
2
t (13)

dYt = â(t,Yt ,Xt)dt + b(t,Yt ,Xt)(ρdŴ 1
t +

√
1− ρ2dŴ 3

t )

with
â(t,Yt ,Xt) = a(t,Yt ,Xt)−

ρ

Yt
µ(t,Yt ,Xt)b(t,Yt ,Xt) (14)

and Ŵ 3 is another Brownian motion independent of Ŵ 1.
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Decomposition of H with respect to S under P̂:
Taking a contingent claim of the form H = h(ST ) for some given function
h→ [0,∞)× R× S. Then finding the Galtchouk-Kunita-Watanabe
decomposition of H under P̂ reduces to solve a system of partial
differential equation PDE if one exploits the Markovian structure.

Using the Markov property we can rewrite (11) in the form

Vt(ϕ
lr ) = Ê [h(ST )|Ft ] = v̂(t,St ,Yt ,Xt) (15)

for some function v̂(t, s, y , x) defined on [0,T ]× R× R× S.
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Proposition 3:

We have that the conditional price of the contingent claim H is given by v̂
as the solution to the system of partial differential equation given for all
i ∈ S by

0 = v̂t(t, s, y , i) + â(t, y , i)v̂y (t, s, y , i)

+
1

2

[
s2y2v̂ss(t, s, y , i) + b2(t, y , i)v̂yy + 2sybρv̂sy (t, s, y , i)

]
+
∑

j 6=i ,j∈S
qij (v̂(t, s, y , j)− v̂(t, s, y , i))

with terminal condition for all i ∈ S,

v̂(T , s, y , i) = h(s, y , i)

where v̂t := ∂v̂
∂t , v̂y := ∂v̂

∂Y , v̂ss := ∂2v̂
∂S2 , v̂yy := ∂2v̂

∂Y 2 and v̂sy := ∂2v̂
∂S∂Y .

Hence for the particular case of european call option:
v̂(T , s, y , i) = (sT (i)− K )+

Goutte Stéphane Pricing and hedging in regime switching stochastic volatility model: Application to electricity markets.December 20, 2011 19 / 35



We are now able to find the decomposition of H with respect to S under P̂
and so the locally risk minimizing H-admissible strategy ϕlr .

Theorem 1:

For all t ∈ [0,T ] we have that the locally risk-minimizing hedging strategy
of H, ϕlr := (v lr , ηlr ) is given by

v lrt = v̂s(u, Su,Yu,Xu) + v̂y (u, Su,Yu,Xu)
ρ

SuYu
b(u,Yu,Xu) (16)

ηlrt = Vt(ϕ
lr )− v lrt St (17)

where Vt(ϕ
lr ) = V0(ϕlr ) +

∫ t
0 v lrs dSs + Llrt and

Llrt =

∫ t

0

√
1− ρ2v̂y (u,Su,Yu,Xu)b(u,Yu,Xu)dŴ 3

u

+

∫ t

0

∫
S

[v̂(u, Su,Yu, j)− v̂(u,Su−,Yu−,Xu−)] (ν − ν)(du, dj)
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We can obtain a formulation of the conditional expected squared cost on
the interval [t,T ] for the locally risk-minimizing strategy ϕlr which we
recall that it is denoted by R lr

t .

Proposition 4:

We have that for all t ∈ [0,T ] that the conditional expected squared cost
on the interval [t,T ] for the locally risk-minimizing strategy ϕlr is given by

R lr
t = E

[(∫ T

t

√
1− ρ2 v̂y (u)b(u)dŴ 3

u

)2

|Ft

]

+2E
[(∫ T

t

√
1− ρ2 v̂y (u)b(u)dŴ 3

u

)(∫ T

t

∫
S

[
v̂(u, j)− v̂(u, Xu−)

]
(ν − ν)(du, dj))

)
|Ft

]
+E
[∫ T

t

[
Qv̂2(u, Xu−)− 2v̂(u, Xu−)Qv̂(u, Xu−)

]
du|Ft

]
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Remark

To apply all the results about local risk minimizing hedging strategy , it
remains to prove that Ẑ is a true P-martingale and square integrable
under P. A well-known sufficient condition for both is boundedness of the
mean variance tradeoff process K uniformly in t and ω. This condition will
be checked in our examples.
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Heston model:

µ(t,Yt ,Xt) = µ(Xt)Yt with µ = (µ1, . . . , µN) ∈ Rcard(S)

a(t,Yt ,Xt) =
4κ(Xt)θ(Xt)− σ(Xt)

2

8Yt
− κ(Xt)

2
Yt , with κ = (κ1, . . . , κN), θ = (θ1, . . . , θN), σ = (σ1, . . . , σN)

b(t,Yt ,Xt) =
σ(Xt)

2
and ρ = ρ0 ∈]− 1, 1[

The constants κi , θi , σi are all nonnegative for all i ∈ S and for all i ∈ S
that κiθi ≥ 1

2σi . The model is then given by

dSt = µ(Xt)Stdt + YtStdW
1
t

dY 2
t = κ(Xt)(θ(Xt)− Y 2

t )dt + σ(Xt)YtdW
2
t

The mean variance tradeoff process is then given by

Kt =

∫ t

0

µ(t,Ys ,Xs)2

Y 2
s

ds =

∫ t

0

µ2(Xs)Y 2
s

Y 2
s

ds =

∫ t

0
µ2(Xs)ds <∞

Hence the MVT process K is deterministic so bounded uniformly in
t ∈ [0,T ] and ω. This imply that Ẑ is a P-martingale and so that we can
apply all the result mentioned before.
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Variance swap

A variance swap is a forward contract on annualized variance, which is the
square of the realized annual volatility. Let Y 2

R denote the realized annual
stock variance over the life of the contract.

Y 2
R =

1

T

∫ T

0
Y 2
t dt

Let Kv and N denote the delivery price for variance and the notional
amount of the swap in dollars per annualized volatility point squared.
Then, the payoff of the variance swap at expiration time T is given by
N(Y 2

R − Kv ). Intuitively, the buyer of the variance swap will receive N
dollars for each point by which the realized annual variance Y 2

R has
exceeded the variance delivery price Kv .
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Assume that we are under the ELMM P̂.

dSt = YtStdŴ
1
t

dYt = â(t,Yt ,Xt)dt + b(t,Yt ,Xt)dŴ 2
t

with â(t,Yt ,Xt) = a(t,Yt ,Xt)− ρ
Yt
µ(t,Yt ,Xt)b(t,Yt ,Xt). In particular,

given FX
T , the conditional price of the variance swap P(X ) is given by

P(X ) = Ê
[

exp

(
−
∫ T

0
rtdt

)
N(Y 2

R − Kv )|FX
T

]
= exp

(
−
∫ T

0
rtdt

)
NÊ

[
Y 2
R |FX

T

]
− exp

(
−
∫ T

0
rtdt

)
NKv

where N is the notional amount in dollars.
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Itô formula gives that for all t ∈ [0,T ]

dÊX
[
Y 2
t

]
dt

= ÊX
[
2Yt â(t,Yt ,Xt) + b2(t,Yt ,Xt)

]
(18)

Assumption 2:

Assume that we know the solution of equation (18) which we denote for
all t ∈ [0,T ] by: y(t,Yt ,Xt).

Proposition 5:

Under Assumption 2, we have for all t ∈ [0,T ] that the variance swap
price P(X) is given by

P(X ) = exp

(
−
∫ T

0
rtdt

)
N

(
1

T

∫ T

0
y(t,Yt ,Xt)dt − Kv

)
(19)
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Heston Model

â(t,Yt ,Xt) = 4κ(Xt)θ(Xt)−σ(Xt)2

8Yt
− κ(Xt)

2 Yt and b(t,Yt ,Xt) = σ(Xt)
2 . Then

(18) becomes

dÊX
[
Y 2
t

]
dt

= κ(Xt)
(
θ(Xt)− ÊX

[
Y 2
t

])
Let yt := ÊX

[
Y 2
t

]
, then we need to solve the differential equation

dyt
dt

= κ(Xt) (θ(Xt)− yt)

The solution of this differential equation is given for all t ∈ [0,T ] by

yt = y0 exp

(
−
∫ t

0
κsds

)
+

∫ t
0

(
exp

(∫ s
0 κudu

)
κsθs

)
ds

exp
(∫ t

0 κsds
)
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Hence we find

ÊX
[
Y 2
t

]
= Y 2

0 exp

(
−
∫ t

0
κsds

)
+

∫ t
0

(
exp

(∫ s
0 κudu

)
κsθs

)
ds

exp
(∫ t

0 κsds
) (20)

We can now obtain the variance swap price applying Proposition 5:

P(X ) = exp

(
−
∫ T

0
rtdt

)
N

[
1

T

∫ T

0

(
Y 2

0 exp

(
−
∫ t

0
κsds

)
+

∫ t
0

(
exp
(∫ s

0 κudu
)
κsθs

)
ds

exp
(∫ t

0 κsds
) )

dt − Kv

]
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Volatility swap

We recall that the realized annual stock variance over the life of the
contract is given by

Y 2
R :=

1

T

∫ T

0
Y 2
t dt

and depend on the Markov chain X. Denote by It =
∫ t

0 Y 2
s ds the

accumulated variance where the process Y 2 is solution of the stochastic
differential equation (SDE) given by

dY 2
t =

(
2Yt â(t,Yt ,Xt) + b2(t,Yt ,Xt)

)
dt + 2Ytb(t,Yt ,Xt)dŴ 2

t (21)

Hence It is the solution of the SDE given by dIt = Y 2
t dt. Let define by ET

t

the expectation at time t ∈ [0,T ] given X by

ET
t = Êt

[
1

T

∫ T

0
Y 2
s ds|FX

T

]
= ÊX

t

[
1

T

∫ T

0
Y 2
s ds

]
(22)
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Hence (ET
t )t∈[0,T ] depends on the variance process Y 2 of the underlying

asset and on the Markov chain X. We call by fair variance strike price the
quantity K ∗v which is such that the variance swap price P(X ) vanishes:

P(X ) = Ê
[

exp

(
−
∫ T

0
rtdt

)
N(Y 2

R − K ∗v )|FX
T

]
= ÊX

[
exp

(
−
∫ T

0
rtdt

)
N(Y 2

R − K ∗v )

]
= 0

Then we have that K ∗v = Ê
[
Y 2
R |FX

T

]
and for time t = 0, we obtain that

ET
0 = K ∗v . We define now the forward price process ZT

t as

ZT
t = Êt

√ 1

T

∫ T

0
Y 2
s ds|FX

T

 = ÊX
t

√ 1

T

∫ T

0
Y 2
s ds

 (23)
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Proposition 6:

The forward price process ZT
t can be expressed as a function

F (t,Y 2
t ,Xt , It) and is the solution of the system of stochastic differential

equation given by

∂F

∂t
+
∂F

∂I
Y 2
t +

∂F

∂Y 2

(
2Yt ât + b2

t

)
dt +

1

2

∂2F

∂(Y 2)2
4Y 2

t b
2
t dt + 〈F ,QXt〉 = 0(24)

with boundary condition given by F (T ,Y 2
T ,XT , IT ) =

√
IT
T .
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To solve system of SDE of Proposition 3, we can use numerical grid using
explicit scheme. For all k ∈ S we construct a grid of size [0, S ]× [0,Y ].
The corresponding discretization will contains I + 1 nodes in S direction
and J + 1 nodes in Y direction. Then all partial differentiations could be
stated as following:

v̂y (k) =
v̂ni ,j+1(k)− v̂ni ,j−1

2∆Y

v̂ss(k) =
v̂ni+1,j(k)− 2v̂ni ,j(k) + v̂ni−1,j(k)

(∆S)2

v̂yy (k) =
v̂ni ,j+1(k)− 2v̂ni ,j(k) + v̂ni ,j−1(k)

(∆Y )2

v̂sy (k) =
v̂ni+1,j+1(k) + v̂ni−1,j−1(k)− v̂ni−1,j+1(k)− v̂ni+1,j−1(k)

4∆S∆Y

and

v̂t(k) =
v̂n+1
i ,j − v̂ni ,j

∆t
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